Home > Archives > CIBA13 IJSRST-Library

Anatomical features of Atriplex halimus L. to Saline Environments

Authors(4) :-Mahi Z., Dedaldechamp F., Belkhodja M., Lemoine R.

In arid and semi-arid regions, the genus Atriplex has agronomic and ecological interest.  Indeed, in addition to their good forage quality, they ensure fixation and soil enrichment. Halophytic plants are able to tolerate saline environments. They often show a diversity of structural and physiological adaptations that include salt bladders, salt glands or hairs and multiple rows of hypodermis (probable with accumulation and storage role). Related to higher salinity of soil, the halophytes react also by some adaptive, anatomical features. In order to elucidate the anatomical variability level, roots, stems and Leaves of one species of Atriplex were used:  Atriplex halimus L. The results show anatomical differences that can be linked to her degrees of adaptation to external conditions.
Mahi Z., Dedaldechamp F., Belkhodja M., Lemoine R.
halophytes, anatomy, blader vegetative organs, Atriplex, salinity.
  1. Osmond CB, Björkman O, Anderson DJ. 1980 Physiological processes in plant ecology, towards a synthesis with Atriplex. Ecological studies, vol. 36. Berlin: Springer-Verlag
  2. Al-Turki, T.A., Omer, S., Ghafoor, A., 2000. A synopsis of the genus Atriplex L. (Chenopodiaceae) in Saudi Arabia. Feddes Repert. 111 : 261-293.
  3. Gu, W., Müller, G., Schlein, Y., Novak, R.J., Beier, J.C., (2011). Natural plant sugar sources of Anopheles mosquitos strongly impact malaria transmission potential. PLoS ONE 6, 159-196.
  4. Le Houérou, 1992Le Houèrou, H.N., (1992). Feeding shrubs to sheep in the Mediterranean arid zone: intake, performance and feed value. In: Proceedings of the IV International Rangeland Conference, Montpellier, France.
  5. Walker, D.J., Moñino, I., González, E., Frayssinet, N., Correal, E., (2005). Determination of ploidy and nuclear DNA content in populations of Atriplex halimus (Chenopodiaceae). Bot. J. Linn. Soc. 147: 441-448.
  6. Debez, A., Chaibi, W., Bouzid, S., ( 2003). Physiological responses and structural modifications in Atriplex halinus L. plants exposed to salinity. Cash crop halophytes, Recent studiesIn: Lieth, H., Mochtchenko, M. (Eds.), Tasks for Vegetation Science. vol. 38. Kluwer Academic Publishers, Dordrecht: 19- 30.
  7. Le Houèrou, H.N., (1986). Salt tolerant plants of economic value in the Mediterranean Basin. Reclamation and Revegetation Research 5: p 319-341.
  8. Goodin and McKell, (1970) Goodin, J.R., McKell, C.M., 1970. Atriplex spp. as a potential forage crop in marginal agricultural areas. In: Proceedings, 11th international grassland conference, Brisbane, Australia. University of Queensland Press: 158-161.
  9. Goodin, J.R., (1979). Atriplex as a forage crop for arid lands. New agricultural crops. In: Ritchie, G.A. (Ed.), AAAS Symposium 38. Westview Press, Boulder, CO, pp.133-148.
  10. Rogers, M.E., Craig, A.D., Munns, R.E., Colmer, T.D., Nichols, P.G.H., Malcolm, C.V., Barrett-Lennard, E.G., Brown, A.J., Semple, W.S., Evans, P.M., Cowley, K., Hughes, S.J., Snowball, R., Bennett, S/., Sweeney, G.C., Dear, B.S., Ewing, M.A., (2005). The potential for developing fodder plants for the salt- affected areas of southern and eastern Australia: an overview. Australian Journal of Experimental Agriculture 45: p 301-329.
  11. Glenn E.P., Andaya T., Chaturvedib R., Martinez-Garciaa R. , Pearlsteina S., Soliz a D., Nelsona S. G., Felgera R.S. (2013). Three halophytes for saline- water agriculture: An oilseed, a forage and a grain crop Environmental and Experimental Botany 92: 110-121.
  12. Abdul, W. (2003). Physiological significance of morpho-Anatomical feature of halophytes with particular reference to cholistan flora. International journal of agriculture & biology; 5(2):207-212.
  13. Marius-Nicusor, G. and Constantin, T. 2007. Histo- Anatomical strategies of Chenopodiaceae halophytes: Adaptive, Ecological and Evolutionary Implications. WSEAS Transactions on Biology and Biomedicine; 12(4):204- 218.
  14. Nawaza T., Hameeda M., Ashrafb M., Ahmada S. A., Batoola R., Fatimaaa S. (2014). Anatomical and physiological adaptations in aquatic ecotypes ofCyperus alopecuroides Rottb. under saline and waterlogged conditions. Aquatic Botany 116: 60–68
  15. Boughalleb, F., Denden, M., Ben Tiba, B., (2009). Anatomical changes induced by increasing NaCl salinity in three fodder shrubs, Nitraria retusa, Atriplex halimus and Medicago arborea. Acta Physiologiae Plantarum 31: p 947-960.
  16. GRIGORE M. N., TOMA C., (2006). Evidencing the succesive cambia phenomenon on some halophylousrepresentatives among Chenopodiaceae and its possible ecological-adaptative implications Studii şi Comunicări, Compl. Muz. Şt. Nat., Ion Borcea” Bacău, vol. 21: 87-93.
  17. El-Ghamery, A.A. et al., Root anatomy of some species of Amaranthus (Amaranthaceae) and formation of successive cambia (2015). Ann. Agric. Sci.http://dx.doi.org/10.1016/j.aoas.201 5.03.001
  18. Shomer- Ilan et al., 1981Shomer-Ilan, A., Nissenbaum, A., Waisel, Y., (1981). Photosynthetic pathways and the ecological distribution of the Chenopodiaceae in Israel. Oecologia 48: 244-248.
  19. Zarrinkamar F., 2001, Foliar anatomy of the Caryophyllaceae family in Arasbaran, NW. Iran, Iran. Journ. Bot., 9 (I): p. 93-102.
  20. Bond, W. J.; Woodward, F. I.; Midgley, G. F. (2005). "The global distribution of ecosystems in a world without ire". NewPhytologist 165 (2):525,538. d oi:10.1111/j.14698137.2004.01252.x. P MID 1572 0663
  21. Osborne, C. P.; Beerling, D. J. (2006). . Philosophical Transactions of the Royal Society B:Biological Sciences 361 (1465):173194. doi:10.109 8/rstb.2005.1737. PMC 1626541
  22. Hibberd J. M. and Covshoff S. 2010 The regulation of gene expression required for C4 photosynthesis Annu. Rev. Plant Biol. 2010. 61: p 181-207
  23. Christin P.A., Osborne C.P. 2013 The recurrent assembly of C4 photosynthesis, an evolutionary tale. Photosynth Res. Nov 117(1-3): p 163- 75. doi: 10.1007/s11120- 013- 9852-z. Epub 2013 May 24.
  24. Fahn A. 1988 Secretory tissues in vascular plants. New Phytol; 108:229- 57.
  25. Hameed, M., Ashraf, M., Naz, N., 2011. Anatomical and physiological characteristicsrelating to ionic relations in some salt tolerant grasses from the Salt Range,Pakistan. Acta Physiol. Plant. 33: p 1399-1409.
  26. Hameed, M., Ashraf, M., Naz, N., ( 2009). Anatomical adaptations to salinity in cogongrass Imperata cylindrica (L.) Raeuschelfrom the Salt Range, Pakistan. Plant Soil 322: 229- 238.
  27. Mozafar A, Goodin JR. (1970)Vesiculated hairs: a mechanism for salt tolerance in Atriplex halimus L. Plant Physiol ,45:62-5
  28. Karimi, S.H., Ungar, I.A., (1989). Development of epidermal salt hairs in Atriplex triangular is Willd. In response to salinity, light intensity, and aeration. Botanical Gazette 150: 68- 71.
  29. Tsutsumi K., Yamada N., Cha-um S., Tanaka Y., Takabe T. (2015) Differential accumulation of glycinebetaine and choline monooxygenase in bladder hairs and lamina leaves of Atriplex gmelini under high salinity. Journal of Plant Physiology 176: 101-107
  30. Smaoui, A., Barhoumi, Z., Rabhi, M., Abdelly, C., (2011). Localization of potential ion transport pathways in vesicular trichome cells of Atriplex halimus L. Protoplasma 248: 363- 372.
  31. Slama I, Ghnaya T, Savouré A, Abdelly C (2008). Combined effects of long- term salinity and soil drying on growth, water relations, nutrient status and proline accumulation of Sesuvium portulacastrum C. R. Biologies, 331: 442-451
  32. Gale, J., Naaman, R. and Poljakoff- Mayber, A. (1970) Growth of Atriplex halimus L. in sodium chloride solutions as affected by relative humidity of the air. Aust. J. Biol. Sci. 23: p 947-952.
  33. Karimi, S.H. and Ungar, I.A. 1989 Development of epidermal salt hairs in Atriplex triangularis WiUd. in response to salinity, light intensity, and aeration. Bot. Gaz. 150: p 68-71.
  34. Bennert, H.W. and Schmidt, B. 1983 Untersuchungen zur Salzabscheidung bei Atriplex hyrnenlytra (Torr.) Wats. (Chenopodiaceae). Flora 174: p 341-355.
  35. Breckle, S.-W., Freitas, H. and Reimann, C. (1990) Sampiing Atriplex bladders: a comparison of methods. Plant and Cell Environment 13: p 871- 873.
  36. Martinez, J.P., Lutts, S., Schanck, A., Bajji, M., Kinet, J.M., (2004). Is osmotic adjustment required for water stress resistance in theMediterranean shrub Atriplex alimus L. Journal of Plant Physiology 161: 1041-1051.
  37. Nemat Alla, M.M., Khedr, A.-H.A., Serag, M.M., Abu-Alnaga, A.Z., Nada, R.M., (2012). Regulation of metabolomics in Atriplex halimus growth under salt and drough stress. Plant Growth Regul. 67: 281- 304.
  38. Ben Ahmed, H., Zid, E., El Gazzah, M., Grignon, C., (1996). Croissance et accumulation ionique chez Atriplex halimus L. Cah. Agric. 5 : p 367-372.
  39. Ben Hassine, H., Ghanem, M.E., Bouzid, S., Lutts, S., (2009). Abscisic acid has contrasting effects on salt excretion and polyamine concentrations of an inland and a coastal population of the Mediterranean xero- halophyte species Atriplex halimus. Ann. Bot. 104: p 925-936.
  40. Nemat Alla, M.M., Khedr, A.H., Sera M.M., Abu-Alnaga, A.Z., Nada, R.M.,(2011). Physiological aspects of tolerance in Atriplex halimus L. to NaCl and drought. Acta Physiologiae Plantarum 33: 547-557
  41. Nedjimi, B., Daoud, Y., (2009). Effects of calcium chloride on growth, membrane permeability and root hydraulic conductivity in two Atriplex species grown at high (sodium chloride) salinity. J. Plant Nutr. 32: 1818-1830.
  42. Boughalleb, F., Denden, M., Ben Tiba, B., (2009). Photosystem II photochemistry and physiological parameters of three fodder shrubs, Nitraria retusa, Atriplex halimus and Medicago arborea under salt stress. Acta Physiol. Plant. 31: 463-476.
  43. Khedr, A.H.A., Serag, M.S., Nemat- Alla, M.M., Abo El-Naga, A.Z., Nada, R.M., Quick, W.P., Abogadallah, G.M., (2011). Growth stimulation and inhibition by salt in relation to Naþ manipulating genes in xero-halophyte Atriplex halimus L. Acta Physiol. Plant. 33: 1769-1784.
  44. Martinez JP, Kinet JM, Bajji M, Lutts S (2005). NaCl alleviates polyethylene glycol- induced water stress in the halophyte species Atriplex halimus L. J Exp. Bot., 4 19: 2421–2431.
  45. Wang LW, Showalter AM (2004). Cloning and salt-induced, ABA independent expression of choline mono-oxygenase in Atriplex prostrata. Physiol. Plant, 120: 405-412.
  46. Souza R., Freire, M.B.G., Karina Patrícia Vieira da Nascimento, C.W.A, Ruizc H. A., Linsa C.M. T. (2012) Biomass, anatomical changes and osmotic potential in Atriplex nummularia Lindl. cultivated in sodic saline soil under water stress Environmental and Experimental Botany 82 : 20– 27
  47. Appezzarto-da-Glória, B., Carmello- Guerreiro, S.M., (2006). Anatomia vegetal, second ed. Vic¸ osa: UFV, p. 438.
  48. Jeschke W.D., Stelter W. (1983) Ion relations of garden orache, Atriplex hortensis L.: growthand ion distribution at moderate salinity and the function of bladder hairs. J ExpBot 34: 795–810.
  49. Storey R., Jones R. G. W., (1979) Responses of Atriplex spongiosa and Suaeda monoica to salinity. Plant. Physiol., vol. 63: 156-162
Publication Details
  Published in : Volume 1 | Issue 6 | CIBA - Conference Proceeding 2015
  Date of Publication : 2017-06-30
License:  This work is licensed under a Creative Commons Attribution 4.0 International License.
Page(s) : 69-76
Manuscript Number : CIBA13
Publisher : Technoscience Academy
PRINT ISSN : 2395-6011
ONLINE ISSN : 2395-602X
Cite This Article :
Mahi Z., Dedaldechamp F., Belkhodja M., Lemoine R., "Anatomical features of Atriplex halimus L. to Saline Environments", International Journal of Scientific Research in Science and Technology(IJSRST), Print ISSN : 2395-6011, Online ISSN : 2395-602X, Volume 1, Issue 6, pp.69-76, CIBA - Conference Proceeding-2015
URL : http://ijsrst.com/CIBA13