Capability of Bioorganic Fertilizer Pseudomonas GanoEB3 for Suppressing Basal Stem Rot Disease in Oil Palm Seedlings

Authors

  • AW Nurul Isma  Department of Biology, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
  • AS Idris  Ganoderma and Diseases Research for Oil Palm Unit (GANODROP), Division of Biology, Malaysian Palm Oil Board (MPOB), No. 6, Persiaran Institusi, Bandar Baru Bangi, Kajang, Selangor, Malaysia
  • N Rosimah  Department of Biology, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
  • O Hishamuddin  Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
  • A Mohd. Puad  Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia

Keywords:

Basal stem rot, endophytic bacteria, Pseudomonas GanoEB3, bioorganic EFB Pseudomonas GanoEB3, Bioorganic RS Pseudomonas GanoEB3, pathological study

Abstract

Oil palm is one of the important crops in Malaysia. Basal Stem Rot (BSR) disease is the biggest threat for oil palm production in Malaysia caused by Ganoderma boninense which had been causing a huge damage for the oil palm industry in Malaysia. The objective of this study was to develop bioorganic fertilizer containing Pseudomonas GanoEB3 for suppressing basal stem rot disease in oil palm seedlings. Endophytic bacteria, Pseudomonas GanoEB3 was isolated from healthy oil palm roots and cultured on nutrient agar media. A suspension containing 108 CFU/mL of the bacteria cells being mixed with vermiculite powder and stored at room temperature. The vermiculite powder containing Pseudomonas GanoEB3 has been formulated with Bioorganic EFB and Bioorganic RS. Pathological analysis showed that Bioorganic EFB Pseudomonas GanoEB3 (T3) and Bioorganic RS Pseudomonas GanoEB3 (T4) have a good potential in inhibiting basal stem rot disease in oil palm seedlings. After eight months of experiment, oil palm seedlings treated with Bioorganic EFB Pseudomonas GanoEB3 and Bioorganic RS Pseudomonas GanoEB3 resulted the reduced percentage for following parameters; disease incidence (DI) for T3 (40%) and T4 (50%), area under the disease progress curve (AUDPC) for T3 (42 units2) and T4 (76 units2), disease severity of foliar index (DSFI) for T3 (37.5%) and T4 (45%), disease severity of bole index (DSBI) for T3 (40%) and T4 (47.5%), disease severity of root index (DSRI) for T3 (55%) and T4 (52.5%) and dead seedlings for T3 (30%) and T4 (40%) compared with control treatment (T2). It shows that both treatments have a good potential in inhibiting BSR disease in oil palm seedlings. This study revealed that Bioorganic EFB and Bioorganic RS containing Pseudomonas GanoEB3 are suitable as an effective biological control agent for suppressing BSR disease in oil palm seedlings.

References

  1. Abdullah, F., Ilias, G. N. M., Nelson, M., Izzati, N. A. M. Z. and Umi Kalsom,             Y. (2003). Disease assessment and the efficacy of Trichoderma as a biocontrol agent of basal stem rot of oil palms. Science Putra Research Bulletin, 11(2): 31-33.
  2. Ariffin, D. and Idris, A. S. (1991). A selective medium  for the isolation of Ganoderma from diseased tissues. In: Yusof et al. (Eds.), Proceedings of the International Palm Oil Conference, Progress, Prospects and Challenges towards the 21st Century (Modul I, Agriculture), 9-14 September 2001, Palm Oil Research Institute of Malaysia, Malaysia.
  3. Azadeh, B. F. and Sariah, M. (2009). Molecular characterization of Pseudomonas aeruginosa UPM P3 from oil palm Rhizosphere. American Journal of Applied Sciences, 6 (11): 1915-1919.
  4. Bivi, M. R., Farhana, M. S. N., Khairulmazmi, A. and Idris, A. (2010). Control             of Ganoderma boninense: a causal pathogen of basal stem rot disease in oil palm with endophytic bacteria in vitro. International    Journal of Agriculture and Biology, 12: 833-839.
  1. Breton, F., Hasan, Y., Hariadi, S., Lubis, Z. and De Franqueville, H. (2006). Characterization of parameters for the development of an early screening test for basal stem rot tolerance in oil palm progenies. Journal of Oil Palm Research, pp. 24–36.
  2. Campbell, C. L. and Madden, L. V. (1990). Introduction to plant disease         epidemiology (pp. 113-121). John Wiley and Sons, USA.
  3. Casler, M. D., Buxton, D. R. and Vogel, K. P. (2002). Genetic modification of             lignin concentration affects fitness of perennial herbaceous plants. Theoretical and Applied Genetics, 104(1): 127–131, Doi: 10.1007/s001220200015.
  4. Collinge, D. B., Kragh, K. M., Mikkelsen, J. D., Nielsen, K. K., Rasmussen, U.            and Vad, K. (1993). Plant chitinases. Plant Journal, 3(1): 31–40. Doi:10.1046/j.1365-313X.1993.t01-1-00999.
  5. Dikin, A., Sijam, K., Zainal Abidin, M. A. and Idris, A. S. (2003). Biological control of seedborne pathogen of oil palm, Schizopyllum commune Fr. with antagonistic bacteria. International Journal of Agricultural, 5: 507–12.
  6. Dikin, A., Sijam, K., Kadir, J. and Idris, A. S. (2005). Extraction of Antimicrobial Substances from Antagonistic Bacteria against   Schyzophyllum commune Fr. Proceeding 27th Malaysian Microbiology         Symposium, Innovation through Microbes, 24-27 November 2005, Grand Plaza Park Royal, Penang, Malaysia.
  7. Hammerschmidt, R. and Kuc, J. A. (1995). Induced resistance to disease in plant (pp. 182). Dordrech: Kluwer.
  8. Kloepper, J. W., Lifshitz, R. and Zablotwicz, R. M. (1989). Free-living bacterial inocula for enhancing crop productivity. Trend Biotechnology, 7: 39–43.
  9. Kranz, J. (1988). Measuring plant disease. In: Kranz, J. and Rotem, J. (Eds.), Experimental Techniques in Plant Disease Epidemiology (pp. 35-50). New York: Springer-Verlag.
  10. Lambrecht, M., Okon, Y., Vande Broek, A. and Vanderleyden, J. (2000). Indole-3-acetic-acid: a reciprocal signalling moleculein bacteria- plant interaction. Trends Microbiology, 8: 298-300.
  11. Larry, A. G. and Colin, M. (2001). Pseudomonas aeruginosa PAO1 kills          Caenorhabditis elegans by cyanide poisoning. Journal of Bacteriology, 183:6207-6214. DOI:10.1128/JB.183.21.6207-6214.2001.
  12. Lim, T. K., Chung, G.F. and Ko, W.H. (1992). Basal stem rot of oil palm caused by Ganoderma boninense. Plant Pathology Bulletin, 1: 147-152.
  13. Liu, J. J., Ekramoddoullah, A. K. M. and Zamani, A. A. (2005). Class IV         chitinase is up-regulated by fungal infection and abiotic stresses and associated with slow-canker-growth resistance to Cronartium ribicola          in western white pine (Pinus monticola). Phytopathology, 3: 284–291.
  14. Liu, L., Kloepper, J. W. and Tuzun, S. (1995). Induction of systemic resistance in cucumber against bacterial angular leaf spot by plant growth-promoting rhizobacteria.  Journal of Phytopathology, 85: 843-847.
  15. Mauch, F. and Staehelin, L. A. (1989). Functional implications of the subcellular localization of ethylene-induced chitinase and beta-1, 3- glucanase in bean          leaves. Plant Cell, 1(4): 447–457.
  16. Metraux, J. P., Burkhart, W., Moyer, M., Dincher, S., Middlesteadt, W.,            Williams, S., Payne, G., Carnes, M. and Ryals, J. (1989). Isolation of a         complementary DNA encoding a chitinase with structural homology to    a bifunctional lysozyme/chitinase. National  Academic Science, 3: 896–900.
  17. Ming, K. S., Khang, Y. G., Jiat, H. T., Joo, K. G., Chee, W. W. and Keng Y. G. (2013). In vitro growth of Ganoderma boninense isolates on novel extract medium and virulence on oil palm seedlings. Malaysian Journal of Microbiology, 9(1): 33-42.
  18. Nasyaruddin, M. N. M. and Idris, A. S. (2011). Viability test of vermiculite powder formulation of Pseudomonas GanoEB3 against Ganoderma    boninense in vitro. Proceeding in MPOB-IOPRI International Seminar : Integrated Oil Palm Pests and Diseases Management, 12 March 2012, MPOB, Bangi, Selangor, Malaysia.
  19. Nur Ain Izzati, M. Z. and Abdullah, F. (2008). Disease suppression in Ganoderma infected oil palm seedlings treated with Trichoderma harzianum. Plant Protection Science, 44(3): 101-259.
  20. Nur Sabrina, A. A., Sariah, M. and Zaharah, A. R. (2012). Effects of calcium and copper on lignin biosynthesis and suppression of Ganoderma boninense infection in oil palm seedlings. Unpublished MSc dissertation, Universiti Putra Malaysia, Malaysia.
  21. Persello-Cartieaux, F., Nussaume, L. and Robaglia, C. (2003). Tales from the underground: molecular plant–rhizobacteria interactions. Journal of Plant Cell Environment, 26: 189–99.
  22. Rees ,R. W., Flood, J., Hasan, Y. and Cooper, R. M. (2007). Low soil   temperature      and root-inoculum contact enhance Ganoderma infection of oil palm; implications for late disease appearance in plantations and screening for disease resistance. Plant Pathology, 56: 862-870.
  23. Rozbeh, H., Nor Azah, Y. and Saba, W. D. (2013). Detection and control of Ganoderma boninense, strategies and perspectives. Springer Plus, 2: 555.
  24. Ryu, C. M., Hu, C. H., Reddy, M. S. and Kloepper, J. W. (2003). Different signaling pathways of induced resistance by rhizobacteria in      Arabidopsis thaliana against two pathovars of Pseudomonas syringae. Journal of New Phytologist, 160: 413–20.
  25. Santos, P., Fortunato, A., Ribeiro, A. and Pawlowski, K. (2008). Chitinases in root nodules. Plant Biotechnology, 25(3): 299–307.
  26. Sariah, M., Husin, M. Z., Miller, R. N. G. and Holderness, M. (1994). Pathogenicity of Ganoderma boninense tested by inoculation of oil         palm seedlings. Plant Pathology, 43: 507-510.
  27. Sarim, D. (2013). Can Beneficial Microbes Protect Oil Palm from Ganoderma boninense?. MEOA Bulletin, 51: 17-21.
  28. Silipo, A. Erbs, G., Shinya, T., Dow, J. M., Parrilli, M., Lanzetta, R., Shibuya, N., Newman, M. A. and Molinaro, A. (2010). Glyco-conjugates as elicitors or suppressors of plant innate immunity. Glycobiology, 20(4):406–419. Doi:10.1093/glycob/cwp201
  29. Skoog, F. and Armstrong, D. J. (1970). Cytokinins. Annual Revision of Plant Physiology, 21: 359–384.
  30. Sturz, A. V., Christie, B. R. and Nowak, J. (2000). Bacterial endophytes:          Potential role in developing sustainable system of crop production.   Critical Reviews Plant Sciences, 19: 1-30.
  31. Van Loon, L. C. and Bakker, P. A. H. M. (2003). Signalling in rhizobacteria-plant interactions. In: De Kroon, H, Visser, E. J. W. (Eds.), Root ecology (Ecological studies), Springer, Berlin, 168: 297–330.
  32. Zaiton, S., Sariah, M. and Zainal Abidin, M. A. (2006). Isolation and Characterization of Microbial Endophytes from Oil Palm Roots: Implication as Biocontrol Agents against Ganoderma. The Planter, 82: 587–97.
  33. Zaiton, S., Sariah, M. and Zainal Abidin, M. A. (2008). Effect of endophytic bacteria on growth and suppression of Ganoderma infection in oil palm. International Journal of Agricultural Biology, 10: 127–132.

Downloads

Published

2015-12-25

Issue

Section

Research Articles

How to Cite

[1]
AW Nurul Isma, AS Idris, N Rosimah, O Hishamuddin, A Mohd. Puad, " Capability of Bioorganic Fertilizer Pseudomonas GanoEB3 for Suppressing Basal Stem Rot Disease in Oil Palm Seedlings, International Journal of Scientific Research in Science and Technology(IJSRST), Online ISSN : 2395-602X, Print ISSN : 2395-6011, Volume 1, Issue 5, pp.264-274, November-December-2015.