QTLs for Spikelet, Panicle and Grain Numbers in Rice (Oryza sativaL) : A Review

Authors

  • Morvarid Rezaei nia  M.S.C, Student, Department of Plant Breeding and biotechnology collage of agriculture. University of zabol. Zabol. Iran
  • DA-Khammari  M.S.C, Student, Department of Plant Breeding and biotechnology collage of agriculture. University of zabol. Zabol. Iran
  • MA-Mohammad Khani  M.S.C, Student, Department of Plant Breeding and biotechnology collage of agriculture. University of zabol. Zabol. Iran
  • MU-Khammari  M.S.C, Department of geographic and urban planning collage of human sciences. University of zahedan. Zahedan. Iran

Keywords:

QTL, Panicle, Grain number, spikelet, Oryza sativa

Abstract

Rice spikelets are borne on the branches of an inflorescence known as a panicle. The weight of an individual rice grain for a cultivar is almost constant. Consequently, yield improvements in a rice cultivar are always associated with an increase in grain number per unit ground area. Understanding the relationship between the number of spikelets when they differentiate and the number of grains at harvest is important in understanding the basis of high yield in rice. Effective panicle number, grain number, and grain weight are the three components of rice yield, of which grain number shows the highest variation and makes the largest contribution to yield output. Rice panicle number per plant is a grain yield component that directly influences rice yield. The identification of the genes controlling panicle number will play a vital role in high -yield rice breeding. Studies on QTL of panicle number in rice are limited to morphological description and primary mapping. Rice grain number is quantitatively inherited and a great deal of quantitative trait locus (QTL) mapping for grain number have been conducted using various mapping populations. Panicle morphology and grain number are influenced by the development of the panicle main axis, primary and secondary branches, spikelet development, and developmental phase transitions. Grain number is linearly correlated with total plant N content.

References

  1. Ahmadi J, Fotokian MT. Fabriki-Orang S. 2008. Detection of QTLs influencing panicle length, panicle grain number and panicle grain sterility in rice. J. Crop Sci. Biotech. 11, 163–170
  2. Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A. 2005. Cytokinin oxidase regulates rice grain production. Science 309, 741–745
  3. Barazesh S, McSteen P. 2008. Hormonal control of grass inflorescence development. Trends Plant Sci 13:656–662
  4. Deshmukh R, Singh A, Jain N, Anand S, Gacche R, Singh A. 2010. Identification of candidate genes for grain number in rice (Oryza sativa L.) Funct. Integr. Genomics 10, 339–347.
  5. Fan CC, Yu XQ, Xing YZ, Xu CG, Luo LJ, Zhang QF. 2005. The main efects, epistatic eVects and environmental interactions of QTLs on the cooking and eating quality of rice in a doubled-haploid line population. Theor Appl Genet 110:1445–1452
  6. Frary A, Nesbitt TC, Frary A, Grandillo S, Knaap EVD, Cong B, Liu JP, Meller J, Elber R, Alpert KB, Tanksley SD. 2000. fw2.2: A quantitative trait locus key to the evolution of tomato fruit size. Science 289:85–88
  7. Guiderdoni E, Galinato E, Luistro J, Vergara G. 1992. Anther culture of tropical japonica × indica hybrids of rice (Oryza sativa L.). Euphytica 62: 219–224
  8. Hasegawa T, Koroda Y, Seligman NG, Horie T. 1994. Response of spikelet number to plant nitrogen concentration and dry weight in paddy rice. Agron. J. 86, 673–676.
  9. Hirose N, Takei K, Kuroha T, Kamada-Nobusada T, Hayashi H, Sakakibara H. 2008. Regulation of cytokinin biosynthesis, compartmentalization and translocation. J Exp Bot 59:75–83
  10. Hittalmani S, Huang N, Courtois B, Venuprasad R, Shashidhar HE, Zhuang JY, Zheng KL, Liu GF, Wang GC, Sidhu JS. 2003. Identification of QTL for growth- and grain yield-related traits in rice across nine locations of Asia. Theor. Appl. Genet. 107: 679–690
  11. Horie T, Ohnishi M, Angus JF, Lewin LG, Tsukaguchi T, Matano T. 1997. Physiological characteristics of high-yielding rice inferred from cross-location experiments. Field Crops Res. 52, 55–67
  12. Hua JP, Xing Y, Xu CG, Sun XL, Yu SB, Zhang Q. 2002. Genetic dissection of an elite rice hybrid revealed that heterozygotes are not always advantageous for performance. Genetics 162, 1885–1895.
  13. Huang X, Qian Q, Liu Z, Sun H, He S, Luo D. 2009. Natural variation at the DEP1 locus enhances grain yield in rice. Nat.Genet. 41, 494–497
  14. Jiao Y, Wang Y, Xue D. 2010. Regulation ofOsSPL14by OsmiR156defines ideal plant architecture in rice. Nat Genet 42:541–544
  15. Khush GS. 1987. Rice breeding: past, present and future. J. Genet. 66: 195–216
  16. Khush GS. 1995. Breaking the yield frontier of rice. Geo Journal 35: 329–332
  17. Kobayashi K, Horie T. 1994. The effect of plant nitrogen condition during reproductive stage on the differentiation of spikelets and rachisbranches in rice. Jpn. J. Crop Sci. 63 (2), 193–199 (in Japanese, with English Abstract).
  18. Kobayashi S, Fukuta Y, Yagi T, Sato T, Osaki M, Khush GS. 2004. Identification and characterization of quantitative trait loci affecting spikelet number per panicle in rice (Oryza sativa L.). Field Crops Res.89: 253–262
  19. Kropff MJ, Cassman KG, Peng S, Matthews RB, Setter TL. 1994. Quantitative understanding of yield potential. In: Cassman, K.G. (Ed.), Breaking the Yield Barrier. International Rice Research Institute, Los Banos, Philippines, pp. 21–38
  20. Li XY, Qian Q, Fu ZM, Wang YH, Xiong GS, Zeng DL, Wang XQ,Liu XF, Teng S, Hiroshi F, Yuan M, Luo D, Han B, Li JY. 2003. Control of tillering in rice. Nature 422:618–621
  21. Li ZK, Pinson N, Stansel M, Park WD. 1995. Identification of QTL for heading date and plant height in rice using RFLP markers. Theor Appl Genet 91:374–381
  22. Lin HX, Ashikari M, Yamanouchi U, Sasaki T, Yano M. 2002. IdentiWcation and characterization of a quantitative trait locus, Hd9, controlling heading date in rice. Breed Sci 52:35–41
  23. Liu T, Mao D, Zhang S, Xu C, Xing Y. 2009. Fine mapping SPP1, a QTL controlling the number of spikelets per panicle, to a BAC clone in rice (Oryza sativa). Theor. Appl. Genet. 118, 1509– 1517
  24. Liu T, Shao D, Kovi MR and Xing Y. 2010. Mapping and validation of quantitative trait loci for spikelets per panicle and 1,000-grain weight in rice (Oryza sativaL.).Theoretical Applied Genetics 120: 933 –942
  25. Luo X, Ji SD, Yuan PR, Lee HS, Kim DM, Balkunde S. 2013. QTL mapping reveals a tight linkage between QTLs for grain weight and panicle spikelet number in rice. Rice 6, 33
  26. Marri PR, Sarla N, Reddy LV, Siddiq EA. 2005. Identification and mapping of yield and yield related QTLs from an Indian accession of Oryza rufipogon. BMC Genet 6:33
  27. Mei HW, Li ZK, Shu QY, Guo LB, Wang YP, Yu XQ, Ying CS, Luo LJ. 2005. Gene actions of QTLs affecting several agronomic traits resolved in a recombinant inbred rice population and two backcross populations. Theor. Appl. Genet. 110: 649–659
  28. Miura K, Ikeda M, Matsubara A. 2010. OsSPL14 promotes panicle branching and higher grain productivity in rice. Nat Genet 42:545–549
  29. Murayama N. 1969. Nitrogen nutrient of rice plant. JARQ 3, 1–4
  30. Salama AD, Wareing PF. 1979. Effects of mineral nutrition on endogenous cytokinins in plants of sunflower (Helianthus annuusL.). J Exp Bot 30:971–981
  31. Suh J, Ahn SN, Cho YC, Kang KH, Choi IS, Kim YG, Suh HS and Hwang HG. 2005. Mapping for QTLs for yield traits using an advanced backcross population from a cross between Oryza sativaandO. glaberrima. Korean Journal Breeding Science37: 214 – 220.
  32. Tabuchi H, Zhang Y, Hattori S, Omae M, Shimizu-Sato S, Oikawa T. 2011. LAX PANICLE2 of rice encodes a novel nuclear protein and regulates the formation of axillary meristems. Plant Cell 23, 3276–3287
  33. Takahashi Y, Shomura A, Sasaki T, Yano M. 2001. Hd6, a rice quantitative trait locus involved in photoperiod sensitivity, encodes the a subunit of protein kinase CK2. Proc Natl Acad Sci USA 98:7922–7927
  34. Thomson MJ, Tai TH, McClung AM, Lai XH, Hinga ME and Lobos KB. 2003 Mapping quantitative trait loci for yield, yield components and morphological traits in an advanced backcross population between Oryza rufipogon and the Oryza sativacultivar Jefferson. Theoretical Applied Genetics107: 479 –493.
  35. Tian F, Zhu ZF, Zhang BS, Tan LB, Fu YC, Wang XK. 2006. Fine mapping of a quantitative trait locus for grain number per panicle from wild rice (Oryza rufipogon Griff.) Theor. Appl. Genet. 113, 619–629.
  36. Tian Y, Zhang H, Xu P, Chen X, Liao Y, Han B, Fu X, Wu X. 2014. Genetic mapping of a QTL controlling leaf width and grain number in rice. Euphytica, DOI 10.1007/s10681-014-1263-5
  37. Tsai AY, Gazzarrini S. 2014. Trehalose-6-phosphate and SnRK1 kinases in plant development and signaling: the emerging picture. Front Plant Sci 5:119
  38. Wada G. 1969. The effect of nitrogenous nutrition on the yield determining process of rice plant. Bull. Nat. Inst. Agric. Sci. A16, 27–167.
  39. Wang J, Wan X, Crossa J, Crouch J, Weng J, Zhai H, Wan J. 2006. QTL mapping of grain length in rice (Oryza sativaL.) using chromosome segment substitution lines. Genet Res 88:93–104
  40. Werner T, Motyka V, Laucou V, Smets R, Van Onckelen H, Schmulling T. 2003. Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. Plant Cell 15:2532–2550
  41. Wu JL, Wu C, Lei C, Baraoidan M, Bordeos A, Madamba MRS, Ramos-Pamplona M, Mauleon R, Portugal A, Ulat VJ. 2005. Chemical- and irradiation-induced mutants of indica rice IR64 for forward and reverse genetics. Plant Mol. Biol. 59: 85–97
  42. Xiao J, Li J, Yuan L, Tanksley SD. 1996. Identification of QTL affecting traits of agronomic importance in a recombinant inbred population derived from a sub specific rice cross. Theor Appl Genet 92:230–244
  43. Xing YZ, Tan YF, Hua JP, Sun XL, Xu CG, Zhang QF. 2002. Characterization of the main effects, epistatic effects and their environmental interactions of QTL on the genetic basis of yield traits in rice. Theor Appl Genet 105:248–257
  44. Xing YZ, Tang WJ, Xue WY, Xu CG, Zhang QF. 2008. Fine mapping of a major quantitative trait loci,qSSP7, controlling the number of spikelets per panicle as a single Mendelian factor in rice. Theor. Appl. Genet. 116, 789– 796
  45. Xiong LZ, Liu KD, Dai X, Xu CG, Zhang QF. 1999. Identification of genetic factors controlling domestication-related traits of rice using an F2 population of a cross between Oryza sativaand O.rufipogon. Theor Appl Genet 98:243–251
  46. Xu CG, Li XQ, Xue Y, Huang YW, Gao J, Xing YZ. 2004. Comparison of quantitative trait loci controlling seedling characteristics at two seedling stages using rice recombinant inbred lines. Theor Appl Genet 109:640–647
  47. Yagi T, Nagata K, Fukuta Y, Tamura K, Ashikawa I, Terao T. 2001. QTL mapping of spikelet number in rice (Oryza sativa L.). Breed. Sci. 51: 53–56
  48. Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K, Umerhara Y, Nagamura Y, Sasaki T. 2000. Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis Xowering time gene CONSTANS. Plant Cell 12:2473–2483
  49. Yu SB, Li JX, Xu CG, Tan YF, Gao YJ, Li XH, Zhang Q. 1997. Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci USA 94:9226–9231
  50. Zhang H, Wang H, Qian YL, Xia JF, Li ZF, Shi YY. 2013. Simultaneous improvement and genetic dissection of grain yield and its related traits in a backbone parent of hybrid rice (Oryza sativa L.) using selective introgression. Mol. Breed. 31, 181–194.
  51. Zhang YS, Luo LJ, Xu CG, Zhang QF, Xing YZ. 2006. Quantitative trait loci for panicle size, heading date and plant height co-segregating in trait-performance derived near-isogenic lines of rice (Oryza sativa). Theor Appl Genet 113:361–368
  52. Zhu Q, Chris H. 2011. Regulation of flowering time and floral patterning by miR172. J Exp Bot 62:487–495
  53. Zhuang J.Y, Lin HX, Lu J, Qian HR, Hittalmani S, Huang N, Zheng KL. 1997. Analysis of QTL × environment interaction for yield components and plant height in rice. Theor. Appl. Genet. 95: 799–808
  54. Zou GH. Liu HY, Liu GL, Hu SP, Yu XQ, Li MS, Wu JH, Luo LJ. 2005. Grain yield responses to moisture regimes in a rice population: association among traits and. Theor. Appl. Genet. 112: 106–113

Downloads

Published

2016-04-30

Issue

Section

Research Articles

How to Cite

[1]
Morvarid Rezaei nia, DA-Khammari, MA-Mohammad Khani, MU-Khammari, " QTLs for Spikelet, Panicle and Grain Numbers in Rice (Oryza sativaL) : A Review, International Journal of Scientific Research in Science and Technology(IJSRST), Online ISSN : 2395-602X, Print ISSN : 2395-6011, Volume 2, Issue 2, pp.140-144, March-April-2016.