Thermal Analysis and Macrostructure of Fe-Si Alloys

Authors

  • M. G. Gonzalez-Flores  epartment of Metallurgical Engineering-Faculty of Chemistry, National Autonomous University of Mexico, UNAM, Coyoacán, Ciudad de México, México
  • J. A. Garcia-Hinojosa  epartment of Metallurgical Engineering-Faculty of Chemistry, National Autonomous University of Mexico, UNAM, Coyoacán, Ciudad de México, México

Keywords:

Electrical Steels, Macrostructure, Cooling Curve Analysis, As-Cast, Columnar-Equiaxed Transition

Abstract

The high electrical and magnetic properties that possess Fe-Si alloys makes them useful materials in the electricity sector as well as in new technological and energy applications. The effect of silicon addition in non-equilibrium transformations of Fe-Si alloys was analyzed via cooling curves analysis, macrostructural characterization and hardness profiles. Two alloys Fe-Si with commercial level impurities were produced by melting. The thermal history was recorded and analyzed throughout the solidification and cooling ranges for each alloy. Samples were sectioned for their characterization and then, resistance to plastic deformation was quantified through a hardness test. Results show that, small increases in the percentage of silicon alter the final morphology because to the presence of more transformations during cooling of samples caused by expansion of the gamma region.

References

  1. V. A. Aranda, J. A. García. 2012. Study of the Macrosegregation of Silicon in Steels for Electrical Applications. MRS Proceedings, Advanced Structural Materials, 2012, Vol. 1373. ISSN 1946-4274, DOI: 10.1557/opl.2012.299.
  2. J. A. García, M. H. Cruz. 2012. Effect of Silicon on the Cast Macrostructure of Fe-Si alloys. MRS Proceedings, Structural and Chemical Characterization of Metal Alloys and Compounds, Vol. 1372. ISSN 1946-4274, DOI:10.1557/opl.2012.127.
  3. M. G. González, J. A. García. 2012. Microstructural study of as-cast Fe-Si alloys. MRS Proceedings, Structural and Chemical Characterization of Metal Alloys and Compounds, Vol. 1372. ISSN 1946-4274, DOI:10.1557/opl.2012.130.
  4. J. Barros, T. Ros-Yañez. 2005. The effect of Si and Al concentration gradients on the mechanical and magnetic properties of electrical steel. Journal of Magnetism and Magnetic Materials, April 2005, Vol. 290-291, Part 2. ISSN NO: 0304-8853 DOI:10.1016/j.jmmm.2004.11.547.
  5. J. Barros, Y. Houbaert. 2005. Modeling Silicon and Aluminum Diffusion in Electrical Steel. Journal of Phase Equilibria and Diffusion, July 2005, Vol. 26, No. 5.  ISSN NO: 1547-7037, DOI: 10.1361/154770305X66457.
  6. S. Nakashima, K. Takachima. 1997. Effect of Silicon content and carbon addition on primary recrystallization of Fe-3 pct Si. Metallurgical and Materials Transactions, March 1997, Vol. 28, Issue 3. ISSN: 1073-5623, DOI: 10.1007/s11661-997-0054-1. 
  7. F. Kovác, M. Dzubinský. 2004. Columnar grain growth in non-oriented electrical steels. Journal of Magnetism and Magnetic Material, 2004, Vol. 269, ISSN NO: 0304-8853, DOI: 10.1016/S0304-8853(03)00628-0.
  8. J.T. Park, J. A. Szpunar. 2009. Effect of initial grain size on texture evolution and magnetic properties in nonoriented electrical steels. Journal of Magnetism and Magnetic Material, 2009, Vol. 321, ISSN NO: 0304-8853, DOI:10.1013/j.jmmm.2008.12.015.
  9. Y. Sidor, F. Kovac. Microstructural aspects of grain growth kinetics in non-oriented electrical steels. Material Characterization, January 2005, Vol. 55. ISSN: 0026-0673, DOI: 10.1016/j.matchar.2005.01.015.
  10. F. J. Landgraf, T. Yonamine. 2003. Magnetic properties of Silicon Steel with as-cast columnar structure. Journal of Magnetism and Magnetic Material, January 2003, Vol. 254-255. ISSN NO: 0304-8853, DOI: 10.1016/S0304-8853(02)00869-7.
  11. A. I. Yatsenko, P.D. Grushko. 1993. The primary structure of Silicon Steels. Metal Science and Heat Treatment, February 1993, Vol. 35, Issue 2. ISSN: 0026-0673, DOI: 10.1007/BF00773796.
  12. H. Liu, Z. Liu. 2011. Solidification structure and crystallographic texture of strip casting 3 wt.% Si non-oriented silicon steel. Materials Characterization, February 2011, Vol. 62. ISSN: 0026-0673, DOI:10.1016/j.matchar.2011.02.010.
  13. Z. Ning, Y. Ping. 2012. Influence of columnar grains on the recrystallization texture evolution in Fe-3%Si electrical steels. Acta Metallurgica Sinica, Vol. 48, Issue 3. DOI: 10.3724/SP.J.1037.2011.00699.
  14. Landolt-Börnstein. Ternary alloy systems. Material Science and International Team, MSIT, Springer, 2008, Vol. 11, subvolume D, part 2. Heidelberg 2008, Germany. ISBN 978-3-540-69759-6.
  15. Y.Luo. 1988. Partial Phase Diagram of Fe-Si (≤8 mass% Si)-C(≤0.8 mass% Si) and Pseudobinary Sections of Fe-Si and Fe-C. Acta Metallurgica Sinica, June 1988, Vol. 24, No 3. ISBN: 0412-1961
  16. R. W. Cahn. 1991. Binary Alloy Phase Diagrams–Second edition. T. B. Massalski, Editor-in-Chief. ASM International, Materials Park, Ohio, USA. December 1990. ISBN: 978-0-87170-403-0, DOI:10.1002/adma.19910031215.
  17. Z. L. Zheng, F. Ye. 2011. Formation of columnar-grained structures in directionally solidified Fe-6.5wt%Si alloy. Intermetallics, February 2011, Vol. 19, Issue 2. ISSN:  0966-9795, DOI:10.1016/j.intermet.2010.08.022.

Downloads

Published

2017-12-31

Issue

Section

Research Articles

How to Cite

[1]
M. G. Gonzalez-Flores, J. A. Garcia-Hinojosa, " Thermal Analysis and Macrostructure of Fe-Si Alloys, International Journal of Scientific Research in Science and Technology(IJSRST), Online ISSN : 2395-602X, Print ISSN : 2395-6011, Volume 2, Issue 3, pp.224-230, May-June-2016.