Home > Archives > IJSRST162515 IJSRST-Library

Effect of Autohydrolysis of Waste Fiber Palm Lignocellulosic From of the Production Chain of Biodiesel

Authors(6) :-Mauricio Ikeda Yoguim, Jessica Viamonte, Wanderlei Alves Lima, Marco Andre Fraga, Nidia Maria Ribeiro Pastura, Wilma de Araujo Gonzalez

The palm waste generated in the production chain of palm oil biodiesel was of about 38% of lignocellulosic waste formed normally empty bunches of fibers. The fundamental characterization of pretreated empty bunches of fibers with liquid hot water. This material with average size of 80 mesh was composed of cellulose 14,4%, hemicellulose 16%, insoluble lignin acid 29,4%, lignin-soluble acid 3,2%, extractives 28,2% and total ash 5,2%. The time and temperature of liquid pretreatment with hot water were 30 and 60 min and 100° C. The characterization of these materials was made by SEM, EDS and infrared spectrometry and HPLC extractives. These analyzes showed modification of the morphology the fibers of empty clusters of oil palm with the appearance of porosity and increase of pulp crystallization rate by the solubility of amorphous cellulose, hemicellulose and lignin as shown by the results of FT-IR. After the hydrothermal treatment, the product of the hydrolysis reaction analyzed by HPLC. The increasing the pretreatment time confirms that the auto-hydrolysis process occurs causing an expansion of the fibers, exposing the crystalline cellulose and probably partial leaching of the hemicellulose and lignin. The products were identified: glucose, xylose, and acetic acid. Therefore, under the conditions of the pretreatment was not observed the formation of furfural.
Mauricio Ikeda Yoguim, Jessica Viamonte, Wanderlei Alves Lima, Marco Andre Fraga, Nidia Maria Ribeiro Pastura, Wilma de Araujo Gonzalez
biomass, auto-hydrolysis, fibers
  1. R. Annunciado, T.H.D Sydenstricker,. S.C Amico, “Experimental investigation of various vegetable fibers as sorbent materials for oil spills”, Marine Pollution Bulletin, v. 50, n. 11, pp. 1340-1346, 2005
  2. Baek, s. C.; kwon, y. J. Optimization of the pretreatment of rice straw hemicellulosic hydrolyzates for microbial production of xylitol. Biotechnol bioproc eng, 2007.
  3. Balat, mustafa;  balat, A critical review of bio-diesel as a vehicular fuel. Energy conversion and management. Vol. 49, issue 10, oct. 2008, p. 2727–2741.
  4. Camassola, ; dillon, a.j.p. Biological pretreatment of sugar cane bagasse for the production of cellulases and xylanases bypenicillium echinulatum. Industrial crops and products. Vol.29, issues 2–3, march 2009, p. 642–647.
  5. Cao, g.l.; ren, n.q.; wang, a.j. Acid hydrolysis of corn stover for biohydrogen production using thermoanaerobacterium thermosacharolyticum Int j. Hydrogen energy vol.34, issue 17, 2009, p.7182-7188.
  6. Chandel, a.k., et al. Detoxification of sugarcane bagasse hydrolyzate improves ethanol production by candida shehatae. Bioresource technology, v. 98, p. 1947-1950, 2007.
  7. Chandel, k. A., et al. Bioconversion of pentoses sugar into ethanol: a review and future directions. Biotechnology and molecular biology reviews, v.6, p.8-20, 2011.
  8. George w. Hubersara iborra avelino corma,synthesis of transportation fuels from biomass:  chemistry, catalysts, and engineering, chem. Rev., 106, 9, 4044–4098,2006
  9. Furlan, l., canzi, s., di bernardo, a. & edwards, c. R. The ineffectiveness of insecticide seed coatings and plantingtime soil insecticides as diabrotica virgifera leconte population suppressors. Journal of applied entomology, vol. 130, pp. 485–490, 2006.
  10. Garrote, g.; domínguez, h.; parajó, j.c. Hydrothermal processing of lignocellulosic materials. Holz roh werkst vol.57, p. 191-202, 1999a.
  11. Ko, j.k.; et Enzyme loading, cellulose hydrolysis and inhibition of celllobiohydrolases using liquid hot water pretreatment. Patent application publication ladisch et  al. Us 2015/0275254a1. Oct. 1, 2015.
  12. Leif j. Jönsson,, carlos martín, pretreatment of lignocellulose: formation of inhibitory by-products and strategies for minimizing their effects, bioresource technology, volume 199, 103–112, (2016)
  13. Ministério de minas de energia - mme. Anuário estatístico - setor metalúrgico 2007, brasília, 128 p, 2007a.
  14. Murphy, j.d and k. Mccarthy. (2005). Ethanol production from energy crops and wastes for use as a transport fuel in ireland. Applied energy, 82, pp. 148-166.
  15. National research council. Committee on biobased industrial products, biobased industrial products-priorities for research and commercialization, national academy press. 1999.
  16. Nigam, j. N. Ethanol production from wheat straw hemicellulose hydrolysate by pichia stipitis. Journal biotechnology, amsterdam, v.87, n.1, p.17-27, 2001.
  17. Matheus poletto, heitor l. Ornaghi júnior and ademir j. Zattera, native cellulose: structure, characterization and thermal properties materials 2014, 7, 6105-6119.
  18. Poku, k. Small-scale palm oil processing in africa. Fao agricultural services bulletin n148, fao, roma. (2002).
  19. Qian, m., tian s., li, x., zhang, j., pan, y. & yang x. Ethanol production from diluteacid softwood hydrolysate by co-culture. Appl. Biochem. Biotechnol., vol. 134, pp. 273–283. 2006.
  20. Radomski, bianca montes. Caracterização da fibra de dendê (elaeisguineensis) e estudos preliminares para a produção de etanol. P.89. Dissertação – instituto militar de engenharia, 2009.
  21. Ravigadevi sambanthamurthi, kalyana sundram, yew-ai tan, chemistry and biochemistry of palm oil, progress in lipid research, 39, issue 6, november 2000, pages 507–558
  22. Salazar, r. F. S.; silva, g. L. P.; silva, m. L. C. P. Estudo da composição da palha de milho para posterior utilização como suporte na preparação de compósitos. In: congresso brasileiro de engenharia química em iniciação científica, 6., 2005, campinas. Anais... Campinas: unicamp, 2005. Cd-rom.
  23. Sills dl, gossett jm. Using ftir to predict saccharification From enzymatic hydrolysis of alkali pretreated biomasses. Biotechnol bioeng 2012; 109:353–62
  24. Silva, v. L. M. M., gomes, w. C., alsina, o. L. S. Utilização do bagaço de cana-de-açúcar como biomassa adsorvente na adsorção de poluentes orgânicos. Revista eletrônica de materiais e processos, v.2, p.27-32, 2007.
  25. Nnanocelulose a partir das fibras da prensagem do mesocarpo do dendê. 2014. P.101. Dissertação – universidade do ceará. 2014.
  26. Villarreal, m.l.m., prata, a.m.r., felipe, m.g.a., almeida, e. & silva, j.b. Detoxification procedures of eucalyptus hemicellulose hydrolysate for xylitol production by candida guilliermondii. Enzyme microbial technol., vol. 40, pp. 17–24, (2006).
  27. Wei, l.; podersimo, l. O.; igathynathane, c.; batchelor, w. D. Process engineering evaluation of ethanol production from wood through bioprocessing and chemical catalysis. Biomass and bioenergy, v.33, p.255-266. 2009.
  28. Weigi, w., shubin. W., liguo. L., combination of liquid hot water pretreatment and wet disk milling to improve the efficiency of the enzymatic hydrolysis of eucalyptus, biosource technology, 128, 725-730(2013)
  29. Wyman, c. E.; decker, s. R.; himmel, m. E.; brady, j. W.; skopec, c. E.; viikari, l. Em polysaccharides: strutural diversity and functional versatility. Dumitriu, s., ed.; dekker: new york, 2005, cap. 43.
Publication Details
  Published in : Volume 2 | Issue 5 | September-October 2016
  Date of Publication : 2016-10-30
License:  This work is licensed under a Creative Commons Attribution 4.0 International License.
Page(s) : 50-59
Manuscript Number : IJSRST162515
Publisher : Technoscience Academy
PRINT ISSN : 2395-6011
ONLINE ISSN : 2395-602X
Cite This Article :
Mauricio Ikeda Yoguim, Jessica Viamonte, Wanderlei Alves Lima, Marco Andre Fraga, Nidia Maria Ribeiro Pastura, Wilma de Araujo Gonzalez, "Effect of Autohydrolysis of Waste Fiber Palm Lignocellulosic From of the Production Chain of Biodiesel", International Journal of Scientific Research in Science and Technology(IJSRST), Print ISSN : 2395-6011, Online ISSN : 2395-602X, Volume 2, Issue 5, pp.50-59, September-October-2016
URL : http://ijsrst.com/IJSRST162515