Home > Archives > IJSRST162561 IJSRST-Library

On the Formation of Solid Solutions with blödite- and kröhnkite-type Structures. I. Synthesis, Vibrational and EPR Spectroscopic Investigations of Na2Zn1-xCux(SO4)2×4H2O (0< x < 0.14)

Authors(5) :-M. Georgiev, Tsv. Bancheva, D. Marinova, R. Stoyanova, D. Stoilova

The solubility diagram of the Na2Zn(SO4)2-Na2Cu(SO4)2-H2O system at 25 ºC reveals that the copper ions are incorporated in the crystals of blödite-type structure, thus forming solid solutions of the type Na2Zn1-xCux(SO4)2×4H2O (0 < x < 0.14). However, the zinc cations do not accept the coordination environment of the copper ions in the strongly distorted CuO6 octahedra (effect of Jahn-Teller) and as a consequence Na2Cu(SO4)2×2H2O free of zinc ions crystallizes in a wide concentration range.

Infrared spectra of the double salts, Na2Zn(SO4)2×4H2O and Na2Cu(SO4)2×2H2O, as well as those of the solid solutions are presented and discussed with respect to the normal vibrations of the sulfate ions and water motions. The experimental results show that new bands corresponding to n3 of sulfate ions appear in the spectra of the solid solutions due to the new bands Cu-OSO3. The strength of the hydrogen bonds as deduced from the frequencies of nOH and nOD of matrix-isolated HDO molecules (spectral range of 2500-2200 cm-1) is discussed and the influence of the metal-water interactions (synergetic effect) on the hydrogen bond strength in both double sulfates is commented. The water librations are also briefly discussed.

The EPR spectra of Na2Cu(SO4)2×2H2O and Na2Zn1-xCux(SO4)2×4H2O are presented and discussed with respect to the crystal sites of the Cu2+ cations. The EPR measurements confirm the claim that the Zn cations are not incorporated in the crystals of the kröhnkite-type structure.

M. Georgiev, Tsv. Bancheva, D. Marinova, R. Stoyanova, D. Stoilova
Na2Zn1-xCux(SO4)2 4H2O solid solutions; Solubility diagram; Vibrational spectra; Hydrogen bond strength; EPR spectra.
  1. Reynaud, M., Ati, M., Boulineau, S., Sougrati. M. T., Melot, B. C., Rousse, G., Chotard, J. N., and Tarascon, J. M. 2013. Bimetallic Sulfates A2M(SO4)2nH2O (A = Li, Na and M = Transition Metal): as New Attractive Electrode Materials for Li- and Na-Ion Batteries. ECS Transactions, 50, 11-19, Print ISSN: 1938-6737; Online ISSN: 1938-5862, DOI: 10.1149/05024.0011ecst.
  2. Reynaud, M., 2013, Design of new sulfate-based positive electrode materials for Li- and Na-ion batteries. Material chemistry. Université de Picardie Jules Verne, France, English version.
  3. Marinova, D., Kostov, V., Nikolova, R., Kukeva, R., Zhecheva, E., Sendova-Vasileva, M., and Stoyanova, R. 2015. From kröhnkite- to alluaudite-type of structure: novel method of synthesis of sodium manganese sulfates with electrochemical properties in alkalimetal ion batteries. J. Mater. Chem., A3, 22287–22299, ISSN 2050-7488, DOI: 10.1039/C5TA07204B.
  4. Giglio, M. 1958. Die Kristallstruktur von Na2Zn(SO4)2.4H2O (Zn-Blödit). Acta Crystallogr., 11, 789-794, ISSN: 0365-110X, DOI: 1107/S0365110X5800222X.
  5. Bukin, V. I., and Nozik, Yu. Z. 1974. A neutronographic investigation of hydrogen bonding in zinc astrakanite Na2Zn(SO4)24H2O. J. Struct. Chem., 15, 616–619, Print ISSN 0022-4766; Online ISSN 1573-8779, DOI: 10.1007/BF00747212.
  6. Hawthorne, F. C. 1985. Refinement of the crystal structure of bloedite; structural similarities in the [VIM( IVTPhi4)2Phin) finite-cluster minerals. Mineral., 23, 669–674, Print ISSN: 0008-4476; Online ISSN: 1499-1276.
  7. Vizcayno, C., and Garcia-Gonzalez, M. 1999. Na2Mg(SO4)2.4H2O, the Mg and-member of the bloedite-type of mineral. Acta Crystallogr.: Cryst. Struct. Commun., C55, 8–11, ISSN: 2053-2296, DOI: 10.1107/S0108270198011135.
  8. Stoilova, D., and Wildner, M. 2004. Blödite-type compounds Na2Me(SO4)2×4H2O (Me = Mg, Co, Ni, Zn): crystal structure and hydrogen bonding systems. J. Mol. Struct., 706, 57-63, ISSN: 0022-2860, DOI:10.1016/j.molstruct.2004.01.070.
  9. Fleck, M., Kolitsch, U., and Hertweck, B. 2002. Natural and synthetic compounds with kröhnkite-type chains: review and classification, Z. Kristallogr., NCS, 217, 1-9, Online ISSN 2196-7105, DOI: 10.1524/zkri.217.9.435.22883.
  10. Fleck, M., and Kolitsch, U. 2003. Natural and synthetic compounds with krohnkite-type chains. An update. Z. Kristallogr., NCS, 218, 553-567, ISSN 2196-7105, DOI: 10.1524/zkri.218.8.553.20689.
  11. Hawthorne, F. C., and Ferguson, R. B. 1975. Refinement of the crystal structure of Kroehnkite. Acta Crystallogr., B31, 1753-1755, ISSN: 2052-5206, DOI: 10.1107/S0567740875006048.
  12. Stoilova, D., Wildner, M., and Koleva, V. 2002. Infared study of nOD mods in isotopically dilute (HDO molecules) Na2Me(XO4)22H2O with matrix-isolated XO42- guest ions (Me = Mn, Co, Ni, Cu, Zn, Cd; X – S, Se). J. Mol. Struct., 643, 37-41, ISSN: 0022-2860, DOI: 10.1016/S0022-2860(02)00404-0.
  13. Ternary and Polycomponent Systems of Inorganic Compounds, Izd. Nauka, Leningrad, 3 (1970) 1010, 1012.
  14. Balarew, Chr., Karaivanova, V, and T. Oikova, T. 1970. Contribution to the study of the isomorphic and isodimorphic inclusions in crystal salts. III. Examination of the systems zinc sulfate-cobalt sulfate-water and zinc sulfate water- nickel sulfate-water at 25°C. Chem. Commun. Departm. Bulg. Acad. Sci., 3, 673-644.
  15. Trendafelov, D., and Balarew, Chr. 1968. Beitrag sur Untersuchung der isomorphen und isodimorphen Einschlusse in Kristallsalzen. II. Untersuchung der Verteiligung der Kobaltionen in verschiedenen Zinksulfathydraten. Comm. Chem. Bulg. Acad. Sci. 1 (1968) 73-80.
  16. Balarew, Chr., and Karaivanova, V. 1975. Change in the Crystal Structure of Zink(II) Sulphate Heptahydrate and Magnesium Sulphate Heptahydrate Due to Isodimorphous Substitution by Copper(II), Iron(II) and Cobalt(II) Ions. Krist. Technik. 10, 1101-1110.
  17. Nakamoto, K. Infrared and Raman spectra of Inorganic and Coordination Compounds, John Wiley & Sons, New York, 1986.
  18. Stoilova, D., Wildner, M., and Koleva, V. 2003. Vibrational behavior of the S–O stretches in compounds with kröhnkite-type chains Na2Me(SeO4)2×2H2O with matrix-isolated SO42- and M¢2+ guest ions (Me= Mn, Co, Ni, Cu, Zn, Cd). Vib. Spectrosc., 31, 115-123, ISSN: 0924-2031, DOI: 10.1016/S0924-2031(02)00104-2.
  19. Mahadevan Pillai, V. P., Nayar, V. U., and Jordanovska, V.B. 1997. Infrared and Raman Spectra of Na2Cu(SO4)22H2O and (CH3NH3)2M(II)(SO4)2·6H2O with M(II)=Cu, Zn, and Ni. J. Solid State Chem., 133, 407-415, ISSN: 0022-4596, DOI: 10.1006/jssc.1997.7486.
  20. Frost, R. L., Hi, Y., and Scholz, R. 2013. Vibrational Spectroscopy of the Copper (II) Disodium Sulphate Dihydrate Mineral Kröhnkite Na2Cu(SO4)2×2H2 Spectrosc. Lett., 46, 447-452, Print ISSN: 0038-7010; Online ISSN: 1532-2289, DOI: 10.1080/00387010.2012.753906
  21. Petruševski, V., and Šoptrajanov, B. 1988. Description of molecular distortions. II. Intensities of molecular distortions II. Intensities of the symmetric stretching bands of tetrahedral molecules. J. Mol. Struct., 175, 349-354, ISSN: 0022-2860, DOI: 10.1016/S0022-2860(98)80101-4
  22. Karadjova, V., Kovacheva, D., and Stoilova, D. 2014. Study on the cesium Tutton compounds, Cs2M(XO4)2×6H2O (M = Mg, Co, Zn; X = S, Se): Preparation, X-ray powder diffraction and infrared spectra. Vib. Spectrosc., 75, 51-58, ISSN: 0924-2031, DOI: 10.1016/j.vibspec.2014.09.006.
  23. Karadjova, V., and Stoilova, D. 2013. Infrared spectroscopic study of Rb2M(XO4)2×2H2O (M = Mg, Co, Ni, Cu, Zn; X = S, Se) and of SO42- guest ions included in rubidium Tutton selenates. Mol. Struct., 1050, 204-210, ISSN: 0022-2860, DOI: 10.1016/j.molstruc.2013.07.013
  24. Eriksson, A., Lindgren, J. 1978. Model calculations of the vibrations of bonded water molecules. J. Mol. Struct., 48, 417-430, ISSN: 0022-2860, DOI: 10.1016/0022-2860(78)87252-4.
  25. Campbell, J. A., Ryan, D. P., and Simpson, L.M. 1970. Interionic forces in crystal-II. Infrared spectra of SO4 groups and ‘octahedrally’ coordinated water in some alums, Tutton salts, and the double salts obtained by dehydrating them. Spectrochim Acta. 26A, 2351-2361, ISSN: 1386-1425, DOI: 10.1016/0584-8539(70)80188-X.
  26. Ebert, M., and Vojtísek, P. 1993. The hydrates of double selenates. Chem. Pap., 47, 292-296, Print ISSN: 0366-6352; Electron ISSN: 1336-9075.
  27. Mi?ka, Zd., Prokopová, L., Cisa?ová, I., and Havli?ek, D. 1996. Crystal structure, thermoanalytical properties and infrared spectra of double magnesium selenates. Collect. Czech. Chem. Commun., 61, 1295-1306, Printed ISSN 0010-0765, Electronic ISSN 1212-6950, DOI: 10.1135/cccc19961295.
  28. Wildner, M., Marinova, D., and Stoilova, D. 2016. Vibrational spectra of Cs2Cu(SO4)2×6H2O and Cs2Cu(SeO4)2×nH2O (n=4, 6) with a crystal structure determination of the Tutton salt Cs2Cu(SO4)2×6H2 J. Mol. Struct., 1106, 440-451, ISSN: 0022-2860, DOI: 10.1016/j.molstruc.2015.11.008.
  29. Sastry, B. A., and Sastry, G. S. 1971. Electron spin resonance studies on Cu2+ doped Na2Zn(SO4)2.4H2 J. Phys. C: Solid State Phys., 4, L347-L350, Print ISSN: 0022-3719, DOI: 10.1088/0022-3719/4/16/008.
  30. Kripal, R., and Shukla, S. 2011. EPR and Optical Study of Cu2+ Ions Doped in Sodium Zinc Sulfate Tetrahydrate Single Crystals. Appl. Magn. Reson., 41, 95-95, Print ISSN: 0937-9347; Online ISSN: 1613-7507, DOI: 1007/s00723-011-0246-0.
  31. Hitchman, M. A., Maaskant, W., van der Plas, J., Simmons, C. J., and Stratemeier, H. 1999. Cooperative Jahn−Teller Interactions in Dynamic Copper(II) Complexes. Temperature Dependence of the Crystal Structure and EPR Spectrum of Deuterated Ammonium Copper(II) Sulfate Hexahydrate. J. Am. Chem. Soc., 121, 1488-1501, Print Edition ISSN: 0002-7863; Web Edition ISSN: 1520-5126, DOI: 10.1021/ja981831w.
  32. Simmons, C., Stratemeier, H., Hitchman, M. A., and Riley, M. 2013. Influence of Lattice Interactions on the Jahn–Teller Distortion of the [Cu(H2O)6]2+ Ion: Dependence of the Crystal Structure of K2xRb2–2x[Cu(H2O)6](SeO4)2 upon the K/Rb Ratio. Inog. Chem., 52, 10481-10499, Print Edition ISSN: 0020-1669; Web Edition ISSN: 1520-510X DOI: 10.1021/ic401385f.
  33. Sarma, C. R. N., Satyanandam, G., Gopalakrishna Murthy, P. V., and Haranadh, C. 1976. EPR investigation of kröhnkite, Na2Cu(SO4)2× J. Phys. C: Solid State Phys., 9, 841-7, Print ISSN: 0022-3719, DOI: 10.1088/0022-3719/9/5/022.



Publication Details
  Published in : Volume 2 | Issue 5 | September-October 2016
  Date of Publication : 2016-10-30
License:  This work is licensed under a Creative Commons Attribution 4.0 International License.
Page(s) : 279-282
Manuscript Number : IJSRST162561
Publisher : Technoscience Academy
PRINT ISSN : 2395-6011
ONLINE ISSN : 2395-602X
Cite This Article :
M. Georgiev, Tsv. Bancheva, D. Marinova, R. Stoyanova, D. Stoilova, "On the Formation of Solid Solutions with blödite- and kröhnkite-type Structures. I. Synthesis, Vibrational and EPR Spectroscopic Investigations of Na2Zn1-xCux(SO4)2×4H2O (0< x < 0.14)", International Journal of Scientific Research in Science and Technology(IJSRST), Print ISSN : 2395-6011, Online ISSN : 2395-602X, Volume 2, Issue 5, pp.279-282, September-October-2016
URL : http://ijsrst.com/IJSRST162561