Home > Archives > IJSRST162612 IJSRST-Library

A Pseudomonas Protegens with High Antifungal Activity Protects Apple Fruits Against Botrytis Cinerea Gray Mold

Authors(7) :-Rai Abdelwahab, Bensidhoum Leila, Tabli Nacera, Bouaoud Yousra, Naili Fatma, Cristina Cruz, Elhafid Nabti

Using beneficial bacteria to control plant pathogens has become an ecofriendly alternative to the excessive use of chemicals. In this investigation, a bacterial strain RhiNA, isolated from an agricultural land in northern Algeria (Bejaia), was selected based on its ability to produce antifungal and plant growth promoting (PGP)-metabolites. It was then molecularly identified and screened for its antagonistic activity against B. cinerea, Mucor sp., A. niger and A. flavus. The isolate was also tested for its ability to attenuate gray mold caused by B. cinerea on apple fruits. This strain, identified as Pseudomonas protegens, produced several hydrolytic enzymes, IAA, siderophores, HCN, ammonia and showed potential inhibition of mycelial growth and spore fungal germination (PGI : 66,66,62 and 58% ; SGP : 14.32, 55.10, 28.92 and 10.15% against A. niger, Mucor sp., B. cinerea and A. flavus, respectively). Only 172.823 mm2 of each inoculated area on apple fruits were touched by B. cinerea-gray mold, compared to 529.74 mm2 of rotted zone in absence of the strain. P. protegens-RhiNA shows high efficiency against a virulent fungal strain of B. cinerea. Thus, it could be used as a biocontrol agent for a sustainable agriculture in future.    
Rai Abdelwahab, Bensidhoum Leila, Tabli Nacera, Bouaoud Yousra, Naili Fatma, Cristina Cruz, Elhafid Nabti
PGPR, Biocontrol, Phytopathogens, IAA, Siderophores, Phosphate Solubilization.
  1. Lafe, O. 2013. Agriculture, in: Lafe, O. (Ed.), Abulecentrism, Rapid Development of Society Catalyzed at the Local Community Level. Springer International Publishing., Switzerland, pp, 127-132.
  2. Singh, P.K., Kumar, V., Maurya, N., Choudhary, H., Kumar, V., Gupta, A.K. 2014. Grassroots Solutions to Overcome Abiotic and Biotic Environmental Stress in Agriculture, in: Singh, S.B., et al. (Eds.), Translational Research in Environmental and Occupational Stress. Springer., India, pp, 11-16.
  3. Glick, B.R. 2015. Biocontrol Mechanisms, in: Glick, B.R. (Ed.), Beneficial Plant-Bacterial Interactions. Springer International Publishing., Switzerland, pp. 123-157.
  4. Peng, X.D., Huang, S.L., Lin, S.H. 2015. First report of corn kernel brown spot disease caused by Mucor irregularis in China. J. Plant Dis. 99(1), 159-160.
  5. Reddy, P.P. 2015. Impacts on Plant Pathogens, in: Reddy, P.P. (Ed.), Climate Resilient Agriculture for Ensuring Food Security. Springer., India, pp, 151-177.
  6. Soanes, D.M., Skinner, W., Keon, J., Hargreaves, J., Talbot, N.J. 2002. Genomics of Phytopathogenic Fungi and the Development of Bioinformatic Resources. MPMI. 15(5), 421-427.
  7. Paoletti, M.G., Pimentel, D. 1996. Genetic Engineering in Agriculture and the Environment, Assessing risks and benefits. BioScience. 46(9), 665-673.
  8. Komárek, M., ?adková, E., Chrastný, V., Bordas, F., Bollinger, J.C. 2010. Contamination of vineyard soils with fungicides: A review of environmental and toxicological aspects. Environ. Int. 36, 138-151.
  9. Hollomon, D.W. 2015. Fungicide Resistance: 40 Years on and Still a Major Problem, in: Ishii, H. Hollomon, D.W. (Eds.), Fungicide Resistance in Plant Pathogens. Springer., Japan, pp. 3-11.
  10. Beneduzi, A., Ambrosini, A., Passaglia, L.M.P. 2012. Plant growth-promoting rhizobacteria (PGPR): Their potential as antagonists and biocontrol agents. Genet. Mol. Biol. 35 (4), 1044-1051.
  11. Vejan, P., Abdullah, R., Khadiran, T., Ismail, S and Boyce, A.N. 2016. Role of Plant Growth Promoting Rhizobacteria in Agricultural Sustainability-A Review. Molecules. doi:10.3390/molecules21050573.
  12. Choudhary, D.K., Prakash, A., Johri, B.N. 2007. Induced systemic resistance (ISR) in plants: mechanism of action. Indian J. Microbiol.47, 289-297.
  13. Annapurna, K., Kumar, A., Kumar, L.V., Govindasamy, V., Bose, P., Ramadoss, D. 2013. PGPR-Induced Systemic Resistance (ISR) in Plant Disease Management, in: Maheshwari, D.K. (Ed.), Bacteria in Agrobiology: Disease Management. Springer-Verlag Berlin, Heidelberg, pp. 405-425.
  14. Reddy, P.P. 2013. Plant Growth-Promoting Rhizobacteria (PGPR), in: Reddy, P.P. (Ed.), Recent Advances in Crop Protection. Springer., India, pp, 131-158.
  15. Gupta, G., Parihar, S.S., Ahirwar, N.K., Snehi, S.K., Singh, V. 2015. Plant Growth Promoting Rhizobacteria (PGPR): Current and Future Prospects for Development of Sustainable Agriculture. J. Microb. Biochem. Technol. 7(2), 96-102.
  16. Nadeem, S.M., Naveed, M., Ahmad, M., Zahir, Z.A. 2015. Rhizosphere Bacteria for Crop Production and Improvement of Stress Tolerance: Mechanisms of Action, Applications, and Future Prospects, in: Arora, N.K. (Ed.), Plant Microbes Symbiosis: Applied Facets. Springer., India, pp, 1-36.
  17. Lorck, H. 1948. Production of hydrocyanic acid by bacteria. Physiol. Plant. 1, 142-146.
  18. Cappucino, J.C. Sherman, N., 1992. Negative staining. Microbiology: A laboratory Manual. 3, 125-179.
  19. Kope?ný, J., Hodrová, B., Stewart, C.S. 1996. the isolation and characterization of a rumen chitinolytic bacterium. Lett. Appl. Microbiol. 23, 195-198.
  20. Alexander, B., Zuberer, D.A. 1991. Use of chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria. Biol. Fertil. Soils. 12, 39-45.
  21. Carder, J.H. 1986. Detection and quantification of cellulase by congo red staining of substrates in a cup-plate diffusion assay. Anal. Biochem. 153, 75-79.
  22. Sierra, G.A. 1957. A simple method for the detection of lipolytic activity of microorganisms and some observations on the influence of the contact between cells and fatty substrates. A. Van. Leeuw. 28, 15-22.
  23. Kavitha, T., Nelson, R., Jesi, S.J. 2013. Screening of rhizobacteria for plant growth promoting traits and antifungal activity against charcoal rot pathogen macrophomina phaseolina. Int. J. Pharm. Bio. Sci. 4, 177-186.
  24. Vinoth, R.S., Kanikkai, R.A., Babu, V.A., Manoj, G.T., Naman, H.S., Johnson, A.J., Infant, S.B., Sathiyaseelan, K. 2009. Study of starch degrading bacteria from kitchen waste soil in the production of amylase by using paddy straw. Recent. Res. Sci. Technol. 1(1), 008–013.
  25. Christensen, W.B. 1946. Urea Decomposition as a Means of Differentiating Proteus and Paracolon Cultures from Each Other and from Salmonella and Shigella Types. J. Bacteriol. 52(4), 461–466.
  26. Malik, D.K., Sindhu, S.S. 2011. Production of indole acetic acid by Pseudomonas sp.: effect of coinoculation with Mesorhizobium sp. Cicer on nodulation and plant growth of chickpea (Cicer arietinum). Physiol. Mol. Biol. Plants. 17(1), 25-32.
  27. Sagervanshi, A., Kumari, P., Nagee, A., Kumar, A. 2012. Isolation and characterization of phosphate solubilizing bacteria from an agriculture soil. Int. J. Life Sci. Pharma. Res. 2, 256-266.
  28. Daffonchio, D., Cherif, A. Borin, S. 2000. Homoduplex and Heteroduplex Polymorphisms of the Amplified Ribosomal 16S-23S Internal Transcribed Spacers Describe Genetic Relationships in the “Bacillus cereus Group”. Appl. Environ. Microbiol. 66(12), 5460–5468.
  29. Kumar, S., Tamura, K. and Nei, M. 2004. MEGA3: integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief. Bioinform. 5(2), 150-163.
  30. Sagahón, I.P., Anducho-Reyes, M.A., Silva-Rojas, H.V., Arana-Cuenca, A., Tellez-Jurado, A.A., Cárdenas-Álvarez, I.O., Mercado-Flores, Y. 2011. Isolation of Bacteria with Antifungal Activity against the Phytopathogenic Fungi Stenocarpella maydis and Stenocarpella macrospora. Int. J. Mol. Sci. 12, 5522-5537.
  31. Bensidhoum, L., RAI, A., Tabli, N., Nabila, K., Meriem, K., Nabti, E. 2015. Biological Control of Botrytis cinerea by Bacillus sp. Strain S7LiBe under Abiotic Stress. First International Symposium of Applied Biology CIBA USTO-MB. IJSRST. 1, 7-14.
  32. Xiao, C.L., Kim, Y.K. 2008. Postharvest fruit rots in apples caused by Botrytis cinerea, Phacidiopycnis washingtonensis, and Sphaeropsis pyriputrescens. Online. Plant Health Progress. doi:10.1094/PHP-2008-0919-01-DG.
  33. Kahlon, R.S. 2016. Pseudomonas: Genome and Comparative Genomics, in: Kahlon, R.S. (Ed.), Pseudomonas: Molecular and Applied Biology. Springer International Publishing., Switzerland, pp. 127-191.
  34. Garrido-Sanz, D., Meier-Kolthoff, J.P., Göker, M., Martín, M., Rivilla, R., Redondo-Nieto, M. 2016. Genomic and Genetic Diversity within the Pseudomonas fluorescens Complex. PLoS ONE. doi:10.1371/journal.pone.0150183.
  35. Jousset, A., Schuldes, J., Keel, C., Maurhofer, M., Daniel, R., Scheu, S., Thuermer, A. 2014. Full-genome sequence of the plant growth-promoting bacterium Pseudomonas protegens CHA0. Genome. Announc. doi:10.1128/genomeA.00322-14.
  36. McCallan, S.E.A., Weedon, F.R. 1940. Toxicity of ammonia, chlorine, hydrogen cyanide, hydrogen sulfide, and sulfide dioxide gazes. II fungi and bacteria. Contrib. Boyce. Thompson Inst. 11, 331-342.
  37. Howell, C.R., Beier, R.C., Stipanovic, R.D. 1988. Production of ammonia by Enterobacter cloacae and its possible role in the biological control Pythium preemergens Damping-off by the bacterium. Phytopathology. 78(8), 1075-1078.
  38. 5Sétamou, M., Cardwell, K.F., Schulthess, F., Hell, K. 1997. Aspergillus flavus Infection and Aflatoxin Contamination of Preharvest Maize in Benin. Plant Disease. 81(11), 1323-1327.
  39. O'Sullivan, D.J., O'Gara, F. 1992. Traits of Fluorescent Pseudomonas spp. Involved in Suppression of Plant Root Pathogens. Microbiological Reviews. 56(4), 662-676.
  40. Dowling, D.N. O'Gara, F. 1994. Metabolites of Pseudomonas involved in the biocontrol of plant disease. TIBTECH. 12, 133-141.
  41. Pal, K.K., Tilak, K.V.B.R., Saxena, A.K., Dey, R., Singh, C.S. 2000. Antifungal characteristics of a fluorescent Pseudomonas strain involved in the biological control of Rhizoctonia solani. Microbiol. Res. 155, 233-242.
  42. Walsh, U.F., Morrissey, J.P., O'Gara, F. 2001. Pseudomonas for biocontrol of phytopathogens: from functional genomics to commercial exploitation. Curr. Opinion Biotechnol. 12, 289-295.
  43. Bensidhoum, L., Nabti, E., Tabli, N., Kupferschmied, P., Weiss, A., Rothballer, M., Schmid, M., Keel, C., Hartmann, A. 2016. Heavy metal tolerant Pseudomonas protegens isolates from agricultural well water in northeastern Algeria with plant growth promoting, insecticidal and antifungal activities. Eur. J. Soil Biol. 75, 38-46.
  44. Glick, B.R. 1995. the enhancement of plant growth by free-living bacteria. J. Microbial. 41, 109-117.
  45. Viveros, O.M., Jorquera, M.A., Crowle, D.E., Gajard, G., Mora, M.L. 2010. Mechanisms and practical considerations involved in plant growth promotion by rhizobacteria. J. Soil Sci. Plant Nutr. 10(3), 293-319.
  46. Rana, A., Saharan, B., Nain, L., Prasanna, R., Shivay, Y.S. 2012. Enhancing micronutrient uptake and yield of wheat through bacterial PGPR consortia. Soil Sci. Plant. Nutr. 58(5), 573-582.
  47. Xun, F., Xie, B., Liu, S., Guo, C. 2015. Effect of plant growth-promoting bacteria (PGPR) and arbuscular mycorrhizal fungi (AMF) inoculation on oats in saline-alkali soil contaminated by petroleum to enhance phytoremediation. Environ. Sci. Pollut. Res. 22, 598-608.
  48. Mitchell, R., Alexande, M., 1963. Lysis of soil fungi by bacteria. Can. J. Microbiol. 6, 169-177.
  49. Sindhu, S.S., Dadarwal, K.R. 2001. Chitinolytic and cellulolytic Pseudomonas sp. antagonistic to fungal pathogens enhances nodulation by Mesorhizobium sp. Cicer in chickpea. Microbiol. Res. 156, 353-358.
  50. Ahmad, N., Shinwari, Z.K., Bashir, S., Yasir, M. 2013. Function and phylogenetic characterization of rhizospheric bacteria associated with GM and non-GM maize. Pak. J. Bot. 45(5), 1781-1788.
  51. Ramyasmruthi, S., Pallavi, O., Pallavi, S., Tilak, K., Srividya, S. 2012. Chitinolytic and secondary metabolite producing Pseudomonas fluorescens isolated from Solanaceae rhizosphere effective against broad-spectrum fungal phytopathogens. Asia. J. Plant Sci. Res. 2(1), 16-24.
  52. Malathi, P., Viswanathan, R. 2013. Role of Microbial Chitinase in the Biocontrol of Sugarcane Red Rot Caused by Colletotrichum falcatum Went. EJBS. 6(1), 17-23.
  53. Simões, M., Cleto, S., Simões, L.C., Pereira, M.O. 2007. Microbial interactions in biofilms: role of siderophores and iron-dependent mechanisms as biocontrol strategies, in: Gilbert, P. et al., (Eds.), Biofilms: Coming of Age. Biofilm Club., Manchester, pp. 157-165.
  54. Hider, R.C., Kong, X. 2010. Chemistry and biology of siderophores. The Royal Society of Chemistry. 27, 637-657.
  55. De Vleesschauwer, D., Bakker, P.A.H.M., Djavaheri, M., Hofte, M. 2008. Pseudomonas fluorescens WCS374r-induced systemic resistance in rice against Magnaporthe oryzae is based on pseudobactin-mediated priming for a salicylic acid-repressible multifaceted defense response. Plant. Physiol. 148 1996-2012.
  56. Amutharaj, P., Sekar, C., Natheer, S. 2013. Development and use of different formulations of pseudomonas fluorescens siderophore for the enhancement of plant growth and induction of systemic resistance against pyricularia oryzae in lowland rice. Int. J. Pharm. Bio. Sci. 4(2), 831-838.
  57. Laslo, E., György, E., Mathé, I., Mara, G., Tamas, E., Abraham, B., Lanyi, S. 2011. Replacement of the traditional fertilizer with microbial technology: isolation and characterization of beneficial nitrogen fixing rhizobacteria. U. P. B. Sci. Bull. 73(SB), 109-114.
  58. Pant, G., Agrawal, P.K. 2014. Isolation and characterization of Indole Acetic Acid Producing Plant Growth Promoting Rhizobacteria from rhizospheric soil of Withania somnifera. JBSO. doi:10.7897/2321-6328.02687.
  59. Karnwal, A. 2009. Production of indole acetic acid by fluorescent pseudomonas in the presence of L-tryptophan and rice root exudates. J. Plant Pathol. 91(1), 61-63.
  60. Bharucha, U., Patel, K. Trivedi, U.B. 2013. Optimization of Indole Acetic Acid Production by Pseudomonas putida UB1 and its Effect as Plant Growth-Promoting Rhizobacteria on Mustard (Brassica nigra). Agric. Res. 2(3), 215-221.
  61. Kamble, K.D., Galerao, D.K. 2015. Indole acetic acid production from Pseudomonas species isolated from rhizosphere of garden plants in Amravati. Int. J. Adv. Pharm. Biol. Chem. 4(1), 23-31.
  62. Khare, E., Arora, N.K. 2010. Effect of Indole-3-Acetic Acid (IAA) Produced by Pseudomonas aeruginosa in Suppression of Charcoal Rot Disease of Chickpea. Curr. Microbiol. 61, 64-68.
  63. Yu, T., Zheng, X.D. 2007. Indole-3-acetic acid enhances the biocontrol of Penicillium expansum and Botrytis cinerea on pear fruit by Cryptococcus laurentii. FEMS Yeast Res. 7, 459-464.
  64. Petti, C., Reiber, K., Ali, S.S., Berney, M., Doohan, F.M. 2012. Auxin as a player in the biocontrol of Fusarium head blight disease of barley and its potential as a disease control agent. BMC Plant Biology. 12(224), 1-9.
  65. Kumar, V., Aggarwal, N.K., Singh, B.P. 2000. Performance and Persistence of Phosphate Solubilizing Azotobacter chroococcum in wheat Rhizosphere. Folia. Microbiol. 45(4), 343-347.
  66. Chen, Y.P., Rekha, P.D., Arun, A.B., Shen, F.T., Lai, W.A., Young, C.C. 2006. Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl. Soil Ecol. 34, 33–41.
  67. Hussain, M.I., Asghar, H.N., Akhtar, M.J., Arshad, M. 2013. Impact of phosphate solubilizing bacteria on growth and yield of maize. Soil Environ. 32(1), 71-78.
  68. Sharma, S.B., Sayyed, R.Z., Trivedi, M.H., Gobi, T.A. 2013. Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus. doi:10.1186/2193-1801-2-587.
  69. Khan, M.S., Zaidi, A., Ahmad, E. 2014. Mechanism of Phosphate Solubilization and Physiological Functions of Phosphate-Solubilizing Microorganisms, in: Khan, M.S. et al. (Eds.), Phosphate Solubilizing Microorganisms. Springer International Publishing., Switzerland, pp, 31-62.
  70. Nosrati, R., Owlia, P., Saderi, H., Rasooli, I., Malboobi, M.A. 2014. Phosphate solubilization characteristics of efficient nitrogen fixing soil Azotobacter strains. Iran J. Microbiol. 6(4), 285-295.
  71. Peix, A., Rivas, R.I., Regina, I.S., Mateos, P.F., Molina, E.M., Barrueco, C.R., Velázquez, E. 2004. Pseudomonas lutea sp. nov., a novel phosphate-solubilizing bacterium isolated from the rhizosphere of grasses. Int. J. Syst. Evol. Microbiol. 54, 847-850.
  72. Rosas, S.B., Andrés, J.A., Rovera, M., Correa, N.S. 2006. Phosphate-solubilizing Pseudomonas putida can influence the rhizobia–legume symbiosis. Soil Biol. Biochem. 38, 3502-3505.
  73. Park, K.H., Lee, C.Y., Son, H.J. 2009. Mechanism of insoluble phosphate solubilization by Pseudomonas fluorescens RAF15 isolated from ginseng rhizosphere and its plant growth-promoting activities. Lett. Appl. Microbiol. 49, 222-228.
  74. Sashidhar, B., Podile, A.R. 2010. Mineral phosphate solubilization by rhizosphere bacteria and scope for manipulation of the direct oxidation pathway involving glucose dehydrogenase. J. App. Microbiol. doi:10.1111/j.1365-2672.2009.04654.x.
  75. Michailides, T.J. 1991. Characterization and comparative studies of Mucor isolates from stone fruits from California and Chile. Plant Dis. 75, 373-380.
  76. Calvo, J., Calvente, V., Orellano, M.E., Benuzzi, D., Sanz, M.I. 2010. Control of Penicillium expansum and Botrytis cinerea on Apple Fruit by Mixtures of Bacteria and Yeast. Food. Bioprocess. Technol. 3, 644-650.
  77. Sharma, R. 2012. Pathogenecity of Aspergillus niger in plants. Cibtech Journal of Microbiology. 1(1), 47-51.
  78. Janisiewicz, W.J., Marchi, A. 1992. Control of storage rot on various pear cultivars with a saprophytic strain of Pseudomonas syringae. Plant. Dis. 76, 555-560.
  79. Luna-Romero, I.J., Carvajal-Moreno, M., Flores-Martínez, A., Ferrera-Cerrato, R. 2000. Possibility of Biological Control of Aspergillus flavus with Pseudomonas fluorescens on Maize Ear. Revista Mexicana de Fitopatología. 18(1), 50-54.
  80. Yunus, F.N., Iqbal, M., Jabeen, K., Kanwal, Z., Rashid, F. 2016. Antagonistic Activity of Pseudomonas fluorescens against Fungal Plant Pathogen Aspergillus niger. Sci. Lett. 4(1), 66-70.
  81. Montealegre, J.R., López, C., Stadnik, M.J., Henríquez, J.L., Herrera, R., Polanco, R., Piero, R.M.D., Pérez, L.M. 2010. Control of grey rot of apple fruits by biologically active natural products. Trop. Plant Pathol. 35(5), 271-276.
  82. Peighami-Ashnaei, S., Sharifi-Tehrani, A., Ahmadzadeh, M., Behboudi, K. 2009. Selection of bacterial antagonists for the biological control of Botrytis cinerea in apple (Malus domestica) and in comparison with application of thiabendazole. Commun. Agric. Appl. Biol. Sci. 74(3), 739-43.
  83. Janisiewicz, W.J., Roitman, J. 1988. Biological control of blue mold and gray mold on apple and pear with Pseudomonas cepacia. Phytopathology. 78, 1697-1700.
Publication Details
  Published in : Volume 2 | Issue 6 | November-December 2016
  Date of Publication : 2016-12-30
License:  This work is licensed under a Creative Commons Attribution 4.0 International License.
Page(s) : 227-237
Manuscript Number : IJSRST162612
Publisher : Technoscience Academy
PRINT ISSN : 2395-6011
ONLINE ISSN : 2395-602X
Cite This Article :
Rai Abdelwahab, Bensidhoum Leila, Tabli Nacera, Bouaoud Yousra, Naili Fatma, Cristina Cruz, Elhafid Nabti, "A Pseudomonas Protegens with High Antifungal Activity Protects Apple Fruits Against Botrytis Cinerea Gray Mold", International Journal of Scientific Research in Science and Technology(IJSRST), Print ISSN : 2395-6011, Online ISSN : 2395-602X, Volume 2, Issue 6 , pp.227-237, November-December-2016.
Journal URL : http://ijsrst.com/IJSRST162612

Article Preview