On the Formation of Solid Solutions with Blödite- and Kröhnkite-Type Structures. II. Structural and Thermal Investigations of Solid Solutions Na2Zn1-xCux(SO4)2×4H2O(0 < x < 0.14)

Authors

  • D. Marinova  Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
  • M. Georgiev  Department of Inorganic Chemistry, University of Chemical Technology and Metallurgy, 1756 Sofia, Bulgaria
  • Tsv. Bancheva  Department of Inorganic Chemistry, University of Chemical Technology and Metallurgy, 1756 Sofia, Bulgaria
  • D. Stoilova  Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria

Keywords:

Na2Zn1-xCux(SO4)2∙4H2O solid solutions; X-ray powder diffraction; Enthalpy of dehydration; Enthalpy of formation; Infrared spectra.

Abstract

Structural and thermal investigations of solid solutions Na2Zn1-xCux(SO4)2×4H2O (0 < x < 0.14) of a blödite-type structure are reported in the present paper. The replacement of the zinc ions by copper ones in the crystals of the blödite-type structure do not change considerably the lattice parameters and the volumes of the unit cells of the solid solutions due probably to the buffer effect of the sodium cations. However, the degree of distortion of the [M(H2O)4(SO4)2] clusters in the solid solutions is larger than that in Na2Zn(SO4)2×4H2O as deduced from the single crystal X-ray diffraction due to the Jahn-Teller effect (DI has value of 0.011 and 0.018 for the neat zinc blödite and solid solutions, respectively).

On the basis of TG-DTA-DSC methods combined with X-ray powder diffraction at elevated temperature, it has been found that the dehydration of blödite phases occurs stepwise, thus forming intermediate dehydrate (at about 130 ºC) and two polymorphic modifications of anhydrous compounds. The form (I) of Na2Zn(SO4)2 and Na2Zn0.86Cu0.14(SO4)2 is stable in the temperature interval of about 200-280 ºC and the from (II) - in the temperature interval of about 330-380 ºC. The incorporation of copper ions in the zinc blödite results in increasing in the values of DHdeh and decreasing in the values of DHf with increasing in the copper content. The water molecule in the kröhnkite compound Na2Cu(SO4)2×2H2O are separated in one step (the dihydrate is stable up to 250 ºC) and after heating at higher temperature it transforms into an anhydrous compound (300-380 ºC). Additionally, the anhydrous Na2Zn(SO4)2, Na2Cu(SO4)2 and Na2Zn0.86Cu0.14(SO4)2 were characterized structurally using both X-ray diffraction and spectroscopic techniques. The infrared spectroscopic experiments add an additional information about the structural properties of the anhydrous compounds. For example, the sulfate tetrahedra in the anhydrous compounds are distorted in a higher degree in comparison to those in the hydrated ones.

References

  • Georgiev, M., Bancheva, Tsv., Marinova, D., Stoyanova, R., and Stoilova, 2016. On the formation of solid solutions with blödite- and kröhnkite-type structures. I. Synthesis, vibrational and EPR spectroscopic investigations of Na2Zn1-xCux(SO4)2×4H2O (0 < x < 0.14). I. J. Sci. Res. Sci. Technol., 2, 279-292. ISSN: 2395-602X, DOI: 15.11/IJSRST162561.
  • Giglio, M. 1958. Die Kristallstruktur von Na2Zn(SO4)2.4H2O (Zn-Blödit). Acta Crystallogr., 11, 789-794. ISSN: 0365-110X, DOI: 1107/S0365110X5800222X.
  • Bukin, V. I., and Nozik, Yu. Z. 1974. A neutronographic investigation of hydrogen bonding in zinc astrakanite Na2Zn(SO4)24H2O. J. Struct. Chem., 15, 616–619. Print ISSN 0022-4766; Online ISSN 1573-8779, DOI: 10.1007/BF00747212.
  • Hawthorne, F. C. 1985. Refinement of the crystal structure of bloedite; structural similarities in the [VIM( IVTPhi4)2Phin) finite-cluster minerals. Mineral., 23, 669–674. Print ISSN: 0008-4476; Online ISSN: 1499-1276.
  • Stoilova, D., and Wildner, M. 2004. Blödite-type compounds Na2Me(SO4)2×4H2O (Me = Mg, Co, Ni, Zn): crystal structure and hydrogen bonding systems. J. Mol. Struct., 706, 57-63. DOI:10.1016/j.molstruct.2004.01.070.
  • Díaz de Vivar, M., Baggio, S., Ibáñez, A., and Baggio, R. 2008. Disodium zinc bis(sulfate) tetrahydrate (zinc astrakanite) revisited. Acta Crystallogr., E64, i30-i31. DOI:10.1107/S1600536808009719.
  • Hawthorne, F. C., and Ferguson, R. B. 1975. Refinement of the crystal structure of Kroehnkite. Acta Crystallogr., B31, 1753-1755. ISSN: 2052-5206, DOI: 10.1107/S0567740875006048.
  • Fleck, M., Kolitsch, U., and Hertweck, B. 2002. Natural and synthetic compounds with kröhnkite-type chains: review and classification, Z. Kristallogr., NCS, 217, 1-9, Online ISSN 2196-7105, DOI: 10.1524/zkri.217.9.435.22883.
  • Fleck, M., and Kolitsch, U. 2003. Natural and synthetic compounds with krohnkite-type chains. An update. Z. Kristallogr., NCS, 218, 553-567, ISSN 2196-7105, DOI: 10.1524/zkri.218.8.553.20689.
  • Stoilova,D., Wildner, M., and Koleva, V. 2002. Infrared study of nOD modes in isotopically dilute (HDO molecules) Na2Me(XO4)2.2H2O with matrix-isolated X¢O42- guest ions (Me = Mn, Co, Ni, Cu, Zn, Cd, and X = S, Se). Mol. Struct., 643, 37?41. DOI: org/10.1016/S0022-2860(02)00404-0.
  • Stoilova, D., Marinova, D., and M. 2009. Hydrogen bond strength in chromates with kröhnkite-type chains, K2Me(CrO4)2·2H2O (Me = Mg, Co, Ni, Zn, Cd). Vibr. Spectrosc., 50, 245-249. DOI: org/10.1016/j.vibspec.2009.01.002.
  • Novak, A. 1974. Hydrogen bonding in solids. Correlation of spectroscopic and crystallographic data. Struct. Bond (Berlin). 18, 177-216.
  • Balarew, Chr., and Karaivanova, V. 1975. Change in the Crystal Structure of Zink(II) Sulphate Heptahydrate and Magnesium Sulphate Heptahydrate Due to Isodimorphous Substitution by Copper(II), Iron(II) and Cobalt(II) Ions. Krist. Technik., 10, 1101-1110.
  • Stoilova, D., S. Peter, S., and H. D. Lutz, H. D. 1994. Metal ion distribution and solubility of MnxCu1-x(HCOO)2×2H2O mixed crystals. Z. Anorg. Allg. Chem., 620 1793-1798. DOI:10.1002/zaac.19946201022.
  • Stoilova, D., and Gentcheva, G. 1992. Influence of the copper ions on the CuxZn1-x(HCOO)2×2H2O solid solution J. Solid State Chem., 24-29. DOI:10.1016/0022-4596(92)90152-L.
  • Stoilova, D., Balarew, Chr., and Vassileva, V. 1985. Co-crystallization of copper and magnesium formates at 25, 50 and 70° Commun. Dept. Chem. Bulg. Acad. Sci., 18, 3-13.
  • Stoilova, D. 1993. On solid solution formation in the Cu(HCOO)2-Co(HCOO)2-H2O system. Solid State Chem., 104, 404-411.DOI: 10.1006/jssc.1993.1176.
  • Baggio, B., Stoilova, D., and Garland M. T. 2003. CuxM1-x(HCOO)2(H2O)33 (M = Mg, Co, x = 0.74): crystal structure and hydrogen bonding system. J. Mol. Struct., 659, 35-42. DOI: org/10.1016/S0022-2860(03)00391-0.
  • Wildner, M. 1992. On the geometry of Co(II)O6 polyhedra in inorganic compounds. DOI:1524/zkri.1992.202.1-2.51.
  • Cot, L. M., and Tiesi, M. 1968. Sur le sel double Na2Zn(SO4)2: varieties cristallines et hydrates. C. R. Acad. Sc. Paris, 266, 1159-1161.
  • Berg, R.W., and Thorup. N. 2004. The Reaction between ZnO and Molten Na2S2O7 or K2S2O7 Forming Na2Zn(SO4)2 or K2Zn(SO4)2, Studied by Raman Spectroscopy and X-ray Diffraction. Inorg. Chem., 44, 3485–3493. DOI: 1021/ic0500513 CCC: $30.25.
  • Allyson, M.F., Sweeney O.T., Phelan, W.A., Drichko, N., Siegler, M.A., and McQueen, T.M. 2015. Uniqueedge-sharingsulfate-transitionmetalcoordination in Na2M(SO4)2 (M=Ni and Co), J. Solid State Chem., 222, 129–135. DOI: org/10.1016/j.jssc.2014.11.010
  • Wagman D, Evans W, Parker V, Schumm R et al. 1982. The NBS tables of chemical thermodynamic properties. J. Phys. Chem. Ref Data, 11, 1-381.
  • Silber P., and Cot L. 1964. Sur quelques proprietes de l’espece cristalline Na2Cu(SO4)2 et de son hydrate Na2Cu(SO4)2×2H2 C. R. Acad. Sc. Paris, Ser. C. 312-315.
  • Nagase, K., Yokobayashi, H., and Sone, K. 1978. Spectrophotometric and thermal analytical studies on the dehydration of copper(II) sulfate and its double salts. Thermochim. Acta 23, 283-291. DOI: 10.1016/0040-6031(78)85070-9.
  • Petruševski, V., and Šoptrajanov, B. 1988. Description of molecular distortions. II. Intensities of molecular distortions II. Intensities of the symmetric stretching bands of tetrahedral molecules. J. Mol. Struct., 175, 349-354, ISSN: 0022-2860, DOI: 10.1016/S0022-2860(98)80101-4.
  • Wildner, M., Marinova, D., and Stoilova, D. 2016. Vibrational spectra of Cs2Cu(SO4)2×6H2O and Cs2Cu(SeO4)2×nH2O (n = 4, 6) with a crystal structure determination of the Tutton salt Cs2Cu(SeO4)2× . Mol. Struct., 1106, 440-451. DOI: org/10.1016/j.molstruc. 2015.11.008
  • Karadjova, V., and Stoilova, D. 2013. Infrared spectroscopic study of Rb2M(XO4)2×2H2O (M = Mg, Co, Ni, Cu, Zn; X = S, Se) and of SO42- guest ions included in rubidium Tutton selenates. J. Mol. Struct., 1050, 204-210, ISSN: 0022-2860. DOI: 10.1016/j.molstruc.2013.07.013.
  • Karadjova, V., Kovacheva, D., and Stoilova, D. 2014. Study on the cesium Tutton compounds, Cs2M(XO4)2×6H2O (M = Mg, Co, Zn; X = S, Se): Preparation, X-ray powder diffraction and infrared spectra. Vib. Spectrosc., 75, 51-58, ISSN: 0924-2031. DOI: 10.1016/j.vibspec.2014.09.006.

Downloads

Published

2016-12-30

Issue

Section

Research Articles

How to Cite

[1]
D. Marinova, M. Georgiev, Tsv. Bancheva, D. Stoilova, " On the Formation of Solid Solutions with Blödite- and Kröhnkite-Type Structures. II. Structural and Thermal Investigations of Solid Solutions Na2Zn1-xCux(SO4)2×4H2O(0 < x < 0.14), International Journal of Scientific Research in Science and Technology(IJSRST), Online ISSN : 2395-602X, Print ISSN : 2395-6011, Volume 2, Issue 6 , pp.283-295, November-December-2016.