Optimized Crosslinking of Gelatin Microspheres with Fructose

Authors(4) :-Josefa Virginia da Silva Souza, Ana Maria Furtado de Sousa, Cristiane Nunes da Costa, Washington Jose Fernandes Formiga and Marcos Antonio da Silva Costa

Crosslinking reactions are a way to minimize the solubility of gelatin in water and thus enable its application in drug delivery systems. In this paper the use of fructose as a crosslinker was studied in order to minimize the cytotoxic effect caused by petroleum derivates as glutaraldehyde. The crosslinking of gelatin with fructose was carried out by water-in-oil emulsion and microspheres were prepared without a surfactant utilization. The experimental parameters were optimized by a complete 23 factorial design, to study the effects of pH, emulsion heating time and fructose concentration. The variance analisys results showed that pH and emulsion heating time have statistical significance to gelatin crosslink while fructose concentration have not a greater influence in this propertie. The samples’ solubility declined when using high pH and long heating times, indicating greater crosslinking degree under these conditions. However thermogravimetric and amino group titration analisys revealed that gelatin microspheres prepared with pH=9, emulsion heating time of 60 min and fructose concentration of 100% (w/w) were the best experimental parameters to produce gelatin microspheres crosslinked with fructose under the conditions studied in this work.

Authors and Affiliations

Josefa Virginia da Silva Souza
Institute of Chemistry, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
Ana Maria Furtado de Sousa
Institute of Chemistry, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
Cristiane Nunes da Costa
Institute of Chemistry, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
Washington Jose Fernandes Formiga and Marcos Antonio da Silva Costa
Institute of Chemistry, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil

Gelatin, Crosslinking, Fructose, Experimental Planning

  1. O. Elzoghby. 2013. Journal of Controlled Release 172, 1075. DOI: 10.1016/j.jconrel.2013.09.019.
  2. He, J. Shi. 2011. Journal of Materials Chemistry 21, 5845. DOI: 10.1039/c0jm03851b.
  3. E. Uhrich, S. M. Cannizzaro, R. S. Langer, K. M. Shakesheff. 1999. Chemical Reviews 99, 3181. DOI: 10.1021/cr940351u.
  4. -J. Rong, L.-J. Yang, B.-T Cai, L.-X. Zhu, Y.-L. Cao, G.-F. Wu, Z.-J. Zhang. 2016. Journal of Materials Science. Materials in Medicine 27, 1. DOI: 10.1007/s10856-016-5699-0.
  5. M. Wache, D. J.Tartakowska, A.Hentrich, M. H.Wagner, 2003. Journal of Materials Science. Materials in Medicine 14, 109. DOI: 10.1023/A:1022007510352.
  6. H.Nezhadi, P. F. M. Choong, F. Lotfipour, C. R. Dass. 2009. Journal of Drug Targeting 17, 731. DOI: 10.3109/10611860903096540.
  7. J.Lee, J. Y. Yhee, S. H Kim, I. C. Kwon, K. Kim. 2013. Journal of Controlled Release 172, 358. DOI: 10.1016/j.jconrel.2013.09.002.
  8. Santoro, A. M. Tatara, A. G. Mikos. 2014. Journal of Controlled Release 190, 210. DOI: 10.1016/j.jconrel.2014.04.014.
  9. A. Khan, S. J. Ismail, S. R.Gani. 2014. Journal of Innovations in Pharmaceutical and Biological Sciences 1, 10. Available online: http://www.jipbs.com/VolumeArticles/FullTextPDF/5_JIPBSV1I102.pdf (accessed on 10/02/2016).
  10. V. N.Rathna. 2008. Journal of Materials Science. Materials in Medicine 19, 2351. DOI: 10.1007/s10856-007-3334-9.
  11. A. Vandelli, F. Rivasi, P. Guerra, F. Forni, R. Arletti. 2001. International Journal of Pharmaceutics 215, 175. DOI: 10.1016/S0378-5173(00)00681-5.
  12. Chen, C. Qiao, Y. Wang, J. Yao. 2014. Industrial & Engineering Chemistry Research 53, 15576. DOI: 10.1021/ie502709u.
  13. M. Lien, W. Te Li, T. J. Huang, 2008. Materials Science and Engineering C 28, 36. DOI: 10.1016/j.msec.2006.12.015.
  14. E. Gough, C. A. Scotchford, S. Downes. 2002. Journal of Biomedical Materials Research 61, 121. DOI: 10.1002/jbm.10145
  15. Cortesi, C. Nastruzzi, S. S. Davis. 1998. Biomaterials 19, 1641. DOI: 10.1016/S0142-9612(98)00034-9.
  16. E. Hodge. 1955. Advanced Carbohydrate Chemistry 10, 169. DOI: 10.1016/S0096-5332(08)60392-6.
  17. Abete, E. Del Gado, L. De Arcangelis, D. H. Serughetti, M. Djabourov. 2008. Journal of Chemical Physics 129, 134902-1. DOI: 10.1063/1.2985655
  18. V. S. Souza, 2012. Preparação e caracterização de bionanocompósitos à base de gelatina e magnetita reticulados com sacarose, Universidade do Estado do Rio de Janeiro, Rio de Janeiro (Master Science Thesis).

Publication Details

Published in : Volume 2 | Issue 6 | November-December 2016
Date of Publication : 2016-12-30
License:  This work is licensed under a Creative Commons Attribution 4.0 International License.
Page(s) : 305-310
Manuscript Number : IJSRST162656
Publisher : Technoscience Academy

Print ISSN : 2395-6011, Online ISSN : 2395-602X

Cite This Article :

Josefa Virginia da Silva Souza, Ana Maria Furtado de Sousa, Cristiane Nunes da Costa, Washington Jose Fernandes Formiga and Marcos Antonio da Silva Costa, " Optimized Crosslinking of Gelatin Microspheres with Fructose", International Journal of Scientific Research in Science and Technology(IJSRST), Print ISSN : 2395-6011, Online ISSN : 2395-602X, Volume 2, Issue 6 , pp.305-310, November-December-2016.
Journal URL : https://ijsrst.com/IJSRST162656
Citation Detection and Elimination     |      | | BibTeX | RIS | CSV

Article Preview