Effect of Multiple Metal Substitutions for A- and B-perovskite Sites on the Thermoelectric Properties of LaCoO3

Authors(6) :-S. Harizanova, E. Zhecheva, V. Valchev, P. Markov, M. Khristov, R. Stoyanova

The present contribution provides new data on the effect of multiple metal substitutions for A- and B-perovskite sites on the thermoelectric properties of LaCoO3-based ceramics. Two groups of perovskite comopositions are studied: double substituted cobaltates with general formula LaCo0.8M0.1M0.1O3 (M0.1M0.1 º Ni0.1Fe0.1, Ni0.1Ti0.1, Mn0.1Fe0.1) and Sr-containing cobaltate with La0.9Sr0.1Co0.8Ni0.1Fe0.1O3. The content of all magnetic (Ni, Fe and Mn) and diamagnetic (Ti and Sr) elements are chosen to be 0.10 mol. Structural and morphological characterizations are carried out by powder XRD, SEM and TEM analyses. The thermoelectric efficiency of the perovskites is determined by the dimensionless figure of merit, calculated from the independently measured Seebeck coefficient, electrical resistivity and thermal conductivity. The effectiveness of the multiple metal substitutions for improvement of the thermoelectric properties of LaCoO3-based ceramics is discussed.

Authors and Affiliations

S. Harizanova
Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
E. Zhecheva
Faculty of Physics, University of Sofia, 1164 Sofia, Bulgaria
V. Valchev
Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
P. Markov
Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
M. Khristov
Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
R. Stoyanova

Cobalt-Based Perovskites; Thermoelectric Oxides.

  1. Sootsman, J.R., Chung, D.Y., and Kanatzidis, M.G. New and old concepts in thermoelectric materials, Angew. Chem., Int. Ed., 48, 8616−8639, DOI: 10.1002/anie.200900598.
  2. Yan, J.,  Gorai, P., Ortiz, S., Miller, B., Barnett, S.A., Mason, T., Stevanovi?, V., and Toberer, E.S. 2015. Material descriptors for predicting thermoelectric performance. Energy Environ. Sci., 8, 983-994, DOI: 1039/C4EE03157A.
  3. Terasaki,, Sasago, Y., Uchinokura, K., 1997. Large Thermoelectric Power in NaCo2O4 Single Crystals. Phys. Rev. B 56, R12685-R12687, DOI: https://doi.org/10.1103/PhysRevB.56.R12685.
  4. Hébert, S., Kobayashi,, Muguerra, H., Bréard, Y., Ragavendra, N., Gascoin, F., Guilmeau, E., and Maignan, A. 2013. From oxides to selenides and sulfides: The richness of the CdI2 type crystallographic structure for thermoelectric properties. Phys. Status Solidi a 210, 69-81, DOI: 10.1002/pssa.201228505.
  5. Señarís Rodríguez, MA, Goodenough, J.B., 1995. LaCoO3Revisited. J. Solid State Chem., 116, 224-231, DOI : 1006/jssc.1995.1207.
  6. Berggold, K., Kriener, M, Zobel, C., Reichl, A., Reuther, M., Müller, R., Freimuth, A. and Lorenz,T. 2005. Thermal conductivity, thermopower, and figure of merit ofLa1-xSrxCoO3. Rev. B 72, 155116, DOI: 10.1021/jp105367r.
  7. Herve, P., Ngamou, T. and Bahlawane, N. 2010. Influence of the Arrangement of the Octahedrally Coordinated Trivalent Cobalt Cations on the Electrical Charge Transport and Surface Reactivity. Chem. Mater. 22, 4158-4165, DOI:1021/cm1004642.
  8. Yu, J., Kamazawa, K., and Louca, D. 2010. Nature of magnetoelastic coupling with the isovalent substitution at the B-site in LaCo1−yByO3. Phys. Rev. B 82, 224101, DOI: 10.1103 /PhysRevB. 82.224101.
  9. Wang, Y., Li, F., Xu, L., Sui, Y., Wang, X., Su, W., and Liu, H. 2011. Large thermal conductivity reduction Induced by La/O Vacancies in the Thermoelectric LaCoO3 System. Chem. 2011, 50, 4412−4416, DOI: 10.1021/ic200178x.
  10. Vulchev,, Vassilev, L., Harizanova, S., Khristov, M., Zhecheva, E. and Stoyanova, R. 2011. Improving of the thermoelectric e?ciency of LaCoO3 by double substitution with nickel and iron. J. Phys. Chem. C 116, 13507−13515, DOI: 10.1021/jp3021408.
  11. Harizanova S., Zhecheva, E., Valchev, V., Khristov, M.,  Stoyanova, R., 2015. Improving the thermoelectric efficiency of co based ceramics. Materials Today: Proceedings 2, 4256, DOI: 10.1016/j.matpr.2015.09.011. 
  12. Ivanova, S., Senyshyn, A., Zhecheva, E., Tenchev, K., Stoyanova, R., Fuess, H., 2010. Crystal structure , microstructure and reducibility of LaNixCo1-xO3 and LaFexCo1-xO3 Perovskites (0<x<0.5), J. Solid State Chem. 183, 940-950. DOI:10.1016/j.jssc.2010.02.009
  13. Schulz, B. 1981. Thermal conductivity of porous and highly porous materials, High Temp. High Press. 13, 649–660, ISSN 0018-1544 .
  14. Zuev,Yu.,Vylkov, A.I., Petrov, A.N., and Tsvetkov, D.S. 2008. Defect structure and defect-induced expansion of undoped oxygen deficient perovskite LaCoO3−δ. Solid State Ionics 179, 1876-1879, DOI: 10.1016/j.ssi.2008.06.001.
  15. Mastin,,Einarsrud, M.A. and Grande T. 2006. Structural and Thermal Properties of La1-xSrxCoO3-δ.Chem. Mater. 18, 6047–6053, DOI: 10.1021/cm061539k.
  16. Kozuka, H., Ohbayashi, K., and Koumoto, K. 2015. Electronic conduction in La-based perovskite-type oxides. Sci. Technol. Adv. Mater. 16, 026001, DOI: 10.1088/1468-6996/16/2/026001
  17. Alonso, J.A., Martínez-Lope, M.J., Casais, M.T., Macmanus-Driscoll, J.L.,  de Silva, P. S. I. P. N., Cohen, L.F. and  Fernández-Díaz, M.T. 1997. Non-stoichiometry, structural defects and properties of LaMnO3+δwith high δ values (0.11≤δ≤0.29). J. Mater. Chem. 7, 2139-2144, DOI: 1039/A704088A.
  18. Matsumoto, G. 1970. Study of (La1-xCax)MnO3. I. Magnetic Structure of LaMnO3. J. Phys. Soc. Jpn. 29, 606-615, DOI: 1143/JPSJ.29.606.
  19. Elemans, J.B.A.A., Laar, B.V., Veen, K.R.V.D., and Looptra, B.O. 1971. The crystallographic and magnetic structures of La1−xBaxMn1−xMexO3 (Me = Mn or Ti). J. Solid State Chem. 3, 238-242, DOI:1016/0022-4596(71)90034-X.
  20. Troyanchuk, I.O., Karpinsky, D.V., Szymczak, R., and Szymczak, H. 2006. Effect of oxygen deficit on magnetic properties of LaCo5Fe0.5O3. J. Magn. Magn. Mater. 298, 19-24, DOI: 10.1016/j.jmmm.2005.03.009.
  21. Sehlin, S. R., Anderson, H. U., and Sparlin, D. M., 1995. Semiemperila model for the electrical properties of La1-xCaxCoO3. Phys. Rev. B,52, 11681, DOI: 10.1103/PhysRevB.52.11681.
  22. Korotin, M. A., Ezhov, S, Solovyev, Yu, IV, Anisimov, V. I., Khomskii, D. I., and Sawatzky, G. A., 1996. Intermediate-spin state and properties of LaCoO3. Rev. B, 54, 5309-5316, DOI: /10.1103/PhysRevB.54.5309.
  23. Yamaguchi, S., Okimoto, Y., and Tokura, Y., 1997. Local lattice distortion during the spin-state transition in LaCoO3. Phys. Rev. B, 55, R8666-R8669, DOI: https://doi.org/10.1103/ PhysRevB.54.5309.
  24. Saitoh, T., Mizokawa, T., Fujimori, A., Takeda, Y., and Takano, M., 1999. Strontium-doped Lanthanum Cobalt Oxides Studied by XPS. Surf. Sci. Spectra, 6, 302-312, DOI: 10.1116/1.1247936.
  25. Asai, K., Yoneda, A., Yokokura, O., Tranquada, J. M., Shirane, G., and Kohn, K., 1998. Two Spin-State Transitions in LaCoO3. Phys. Soc. Jpn., 67, 290-296, DOI: 10.1143/JPSJ.67.290.
  26. Narasimhan, V., Keer, H.V., and Chakrabar, D.K. 1985. Structural and Electrical Properties of the LaCol-xMnxO3 and LaCol-xFexO3 Systems, Phys. Stat. Sol. (a) 89, 65-71. DOI: 1002/pssa.2210890105.
  27. Koshibae, W., Tsutsui, K., Maekawa, S., 2000. Thermopower in cobalt oxides. Rev. B, 62, 6869-6872, DOI: https://doi.org/10.1103/PhysRevB.62.6869 .
  28. Kyômen, T., Yamazaki, R., and Itoh, M., 2003. Valence and spin state of Co and Ni ions and their relation to metallicity and ferromagnetism in LaCo5Ni0.5O3. Phys. Rev. B, 68, 104416, DOI: https://doi.org /10.1103/PhysRevB.68.104416.
  29. Androulakis, J., Katsarakis, N., Viskadourakis, Z., and Giapintzakis, J., 2003. Comparative study of the magnetic and magnetotransport properties of a metallic and a semiconducting member of the solid solution LaNixCo1−xO3. J. Appl. Phys., 93, 5484-5490, DOI: 10.1063/1.1561589.
  30. Viswanathan, M., Anil Kumar PS., 2009. Observation of reentrant spin glass behavior in LaCo5Ni0.5O3. Phys. Rev B, 80, 012410-1-012410-4, DOI: https://doi.org/10.1103/PhysRevB.80.012410.
  31. Chen, R., Delgado, R. D., Garnett, E. C., Hochbaum, A. I., Liang, W., Majumdar, A., Najarian, M., and Yang, P., 2008. Enhanced thermoelectric performance of rough silicon nanowires. Nature, 451, 163-168 DOI: 10.1038/nature06381.
  32. Chateigner, D., Chong, K., Funahashi, R., Guilmeau, E., and Mikami, M. 2004. Thermoelectric properties–texture relationship in highly oriented Ca3Co4O9 Appl. Phys. Lett., 85, 1490-1492, DOI: 10.1063/1.1785286.
  33. Yadav, G. G., Zhang, G., Qiu, B., Susoreny, J. A., Ruan, X., and Wu, Y., 2011. Synthesis and Thermoelectric Properties of Compositional Modulated Lead Telluride–Bismuth Telluride Nanowire Heterostructures. Nanoscale, 3, 4078−4081, DOI: 10.1021/nl400319u.

Publication Details

Published in : Volume 2 | Issue 6 | November-December 2016
Date of Publication : 2016-12-30
License:  This work is licensed under a Creative Commons Attribution 4.0 International License.
Page(s) : 428-439
Manuscript Number : IJSRST162682
Publisher : Technoscience Academy

Print ISSN : 2395-6011, Online ISSN : 2395-602X

Cite This Article :

S. Harizanova, E. Zhecheva, V. Valchev, P. Markov, M. Khristov, R. Stoyanova, " Effect of Multiple Metal Substitutions for A- and B-perovskite Sites on the Thermoelectric Properties of LaCoO3", International Journal of Scientific Research in Science and Technology(IJSRST), Print ISSN : 2395-6011, Online ISSN : 2395-602X, Volume 2, Issue 6 , pp.428-439, November-December-2016.
Journal URL : http://ijsrst.com/IJSRST162682

Article Preview