Clustering Data from Heterogeneous Dissimilarities

Authors(6) :-Prof. Sheetal More, Prof. Bajirao Shirole, Roshani Balkrushna Derle, Rinita Dilip Jadhav, Shraddha Chandrabhan Jadhav, Jyoti Yadav Kadale

The clustering model which, to handle the heterogeneity, uses all available dissimilarity matrices and identifies for groups of individuals clustering objects in a similar way. The model is a non-convex problem and difficult to solve exactly, and we thus introduce a Variable Neighborhood Search heuristic to provide solutions efficiently. In our Proposed System we use clustering mechanism to create groups of given heterogeneous datasets, in this system we process heterogeneous data like html and xml as well as numeric data and convert them to single vector by using correlation of values and then this single vector will be clustered by corr-k mean algorithm. output will be number of unlabelled clusters and these clusters will be more precise than what produced by Existing system. In the scope Find centroids and create clusters by automatic clustering method not by iterative method. It can be used to cluster different types of data

Authors and Affiliations

Prof. Sheetal More
Computer Engineering Department, Sanghavi College of Engineering, Pune University, Nashik, Maharastra, India
Prof. Bajirao Shirole
Computer Engineering Department, Sanghavi College of Engineering, Pune University, Nashik, Maharastra, India
Roshani Balkrushna Derle
Computer Engineering Department, Sanghavi College of Engineering, Pune University, Nashik, Maharastra, India
Rinita Dilip Jadhav
Computer Engineering Department, Sanghavi College of Engineering, Pune University, Nashik, Maharastra, India
Shraddha Chandrabhan Jadhav
Computer Engineering Department, Sanghavi College of Engineering, Pune University, Nashik, Maharastra, India
Jyoti Yadav Kadale
Computer Engineering Department, Sanghavi College of Engineering, Pune University, Nashik, Maharastra, India

Clustering, Heterogeneous, Centroids, Heuristic, K Mean Algorithm.

  1. Anstreicher, K. M. (2012). On convex relaxations for quadratically constrained quadratic programming. Mathematical Programming , 136 (2), 233–251 . Arora, R. (1982).
  2. Consumer involvement in retail store positioning. Journal of the Academy of Marketing Science , 10 (1-2), 109–124 . Audet, C. , Hansen, P. , Jaumard, B. , & Savard, G. (20 0 0). A branch and cut algorithm for nonconvex quadratically constrained quadratic programming. Mathematical Programming , 87 (1), 131–152 . Avella, P. , Boccia, M. , Salerno, S. , & Vasilyev, I. (2012).
  3. An aggregation heuristic for large scale p-median problem. Computers & Operations Research , 39 (7), 1625–1632 .
  4. Belotti, P. , Lee, J. , Liberti, L. , Margot, F. , & Wächter, A. (2009). Branching and bounds tightening techniques for non-convex Minlp. Optimization Methods and Soft- ware , 24 (4–5), 597–634 . Bettman, J. R. , Luce, M. F. , & Payne, J. W. (1998).
  5. Constructive consumer choice pro- cesses. Journal of Consumer Research , 25 (3), 187–217 . Bettman, J. R. , & Park, C. W. (1980). Effects of prior knowledge and experience and phase of the choice process on consumer decision processes: A protocol analy- sis. Journal of Consumer Research , 7 , 234–248 . Bijmolt, T. H. , & Wedel, M. (1995).
  6. The effects of alternative methods of collecting similarity data for multidimensional scaling. International Journal of Research in Marketing , 12 (4), 363–371 . Bijmolt, T. H. , Wedel, M. , Pieters, R. G. , & DeSarbo, W. S. (1998).
  7. Judgments of brand similarity. International Journal of Research in Marketing , 15 (3), 24 9–26 8 . Billionnet, A. , Elloumi, S. , & Lambert, A. (2016). Exact quadratic convex reformula- tions of mixed-integer quadratically constrained problems. Mathematical Pro- gramming . in press.
  8. Blanchard, S. , & Banerji, I. (2016). Evidence-based recommendations for designing free-sorting experiments. Behavior Research Methods . in press. Blanchard, S. J. , Aloise, D. , & DeSarbo, W. S. (2012a). The heterogeneous p-median problem for categorization based clustering. Psychometrika , 77 (4), 741–762 . Blanchard, S. J. , & DeSarbo, W. S. (2013). A new zero-inflated negative binomial methodology for latent category identification. Psychometrika , 78 (2), 322–340 .
  9. Blanchard, S. J. , DeSarbo, W. S. , Atalay, A. S. , & Harmancioglu, N. (2012b). Identify- ing consumer heterogeneity in unobserved categories. Marketing Letters , 23 (1), 177–194 . Bomze, I. M. , & Locatelli, M. (2004). Undominated dc decompositions of quadratic functions and applications to branch-and-bound approaches. Computational Op- timization and Applications , 28 (2), 227–245 .
  10. Brusco, M. J. , & Cradit, J. D. (2001). A variable-selection heuristic for k-means clus- tering. Psychometrika , 66 (2), 249–270 . Brusco, M. J. , & Cradit, J. D. (2005). Conpar: a method for identifying groups of concordant subject proximity matrices for subsequent multidimensional scaling analyses.
  11. Journal of Mathematical Psychology , 49 (2), 142–154 . Brusco, M. J. , Steinley, D. , Cradit, J. D. , & Singh, R. (2012). Emergent clustering methods for empirical OM research. Journal of Operations Management , 30 (6), 454–466 . Carpenter, G. S. , & Nakamoto, K. (1994).
  12. Reflections on”consumer preference forma- tion and pioneering advantage”. Journal of Marketing Research , 31 (4), 570–573 . Coxon, A. P. M. (1999). Sorting data: Collection and analysis: 127. Sage . DeSarbo, 300.

Publication Details

Published in : Volume 3 | Issue 3 | March-April 2017
Date of Publication : 2017-04-30
License:  This work is licensed under a Creative Commons Attribution 4.0 International License.
Page(s) : 396-399
Manuscript Number : IJSRST1733139
Publisher : Technoscience Academy

Print ISSN : 2395-6011, Online ISSN : 2395-602X

Cite This Article :

Prof. Sheetal More, Prof. Bajirao Shirole, Roshani Balkrushna Derle, Rinita Dilip Jadhav, Shraddha Chandrabhan Jadhav, Jyoti Yadav Kadale, " Clustering Data from Heterogeneous Dissimilarities, International Journal of Scientific Research in Science and Technology(IJSRST), Print ISSN : 2395-6011, Online ISSN : 2395-602X, Volume 3, Issue 3, pp.396-399, March-April-2017. Available at doi : 10.32628/IJSRST1733139
Journal URL : http://ijsrst.com/IJSRST1733139

Article Preview

Contact Us