High Performance Asymmetric Supercapacitor based on spinel Co3O4 nanoparticles

Authors

  • Selvapriya R  Centre for Research and Post Graduate Department of Physics, Ayya Nadar Janaki Ammal College, Sivakasi,Tamil Nadu, India
  • Alagar M  Centre for Research and Post Graduate Department of Physics, Ayya Nadar Janaki Ammal College, Sivakasi,Tamil Nadu, India

Keywords:

Co3O4 Nanostructures, Co-Precipitation, Cyclic Voltammetry, Galvanostatic Charge-Discharge And Asymmetric Supercapacitor.

Abstract

We report a facile synthesis and characterization of spinel Co3O4 nanostructures on its utilization as electrode material for asymmetric supercapacitors by co-precipitation method. The as-synthesized nanostructure was characterized by X-ray diffraction(XRD),Fourier transform infrared spectroscopy(FTIR) and Scanning electron microscopy(SEM). Electrochemical behaviour of the Co3O4 electrode performance was characterized by cyclic voltammetry(CV) in 1 M KOH electrolyte using a three electrode system. Galvanostatic charge-discharge measurements made on the fabricated asymmetric supercapacitor gave a high specific capacitance of 17.33 F/g at a discharge current density of 0.2 A/g. Moreover, they showed an excellent cycle stability and better capacity retention of 92% after 2000 continuous charge-discharge cycles.

References

  1. B.E.Conway, Electrochemical supercapacitors, scientifc fundamentals and technological applications, Plenum, NewYork,1999.
  2. A. Burke, J.Power Sources 91(2000)37–50.
  3. B.E. Conway, Transition from Supercapacitor to Battery behavior in electrochemical energy storage, J. Electrochem. Soc. 138 (1991) 1539.
  4. R. Kotz, M. Carlen, Principles and applications of electrochemical capacitors, Electrochim. Acta 45 (2000) 2483.
  5. P. Simon, Y. Gogotsi, Materials for electrochemical capacitors, Nat. Mater. 7 (2008) 845.
  6. Devadas, S. Baranton, T.W. Napporn, C. Coutanceau, Tailoring of RuO2 nanoparticles by microwave assisted Instant method for energy storage applications, J. Power Sources 196 (2011) 4044
  7. T.Y. Wei, C.H. Chen, K.H. Chang, S.Y. Lu, C.C. Hu, Cobalt oxide aerogels of ideal supercapacitive properties prepared with an epoxide synthetic route, Chem. Mater. 21 (2009) 3228.
  8. S.K. Mehar, G.R. Rao, Effect of microwave on the nanowire morphology, optical, magnetic, and pseudocapacitance behavior of Co3O4, J. Phys. Chem. C 115 (2011) 25543   
  9. G.A.Santos,C.M.B. Santos, S.W.DSilva,    E.A   Urquieta-Gonzalez, P.P.C   Sartoratto, Sol–gel synthesis of silica–cobalt composites by employing Co3O4colloidal Dispersions, Colloids Surf. A: Physicochem. Eng. Aspects 395 (2012) 217.
  10. S.K. Meher, G.R. Rao, Effect of microwave on the nanowire morphology, optical, magnetic, and pseudocapacitance behavior of Co3O4, J. Phys. Chem. C 115 (2011) 25543.
  11. S.K. Meher, G.R. Rao, Ultralayered CO3O4 for   high-performance supercapacitor applications, J. Phys. Chem. C 115 (2011) 15646
  12. S.H. Jhung, T. Jin, Y.K. Hwang, J.S. Chang, Microwave effect in the fast synthesis of microporous materials: which stage between nucleation and crystal growth is accelerated by microwave irradiation? Chem. Eur. J. 13 (2007) 4410 
  13. Y.Y. Liang, S.J. Bao, H.L. Li, Nanocrystalline nickel cobalt hydroxides/ultrastable Y zeolite composite for electrochemical capacitors, J Solid State Electrochem. 11 (2007) 571.
  14. Y. Li, K. Huang, S. Liu, Z. Yao, S. Zhuang, Meso-macroporous Co3O4 electrode prepared by polystyrene spheres and carbowax templates for supercapacitors, J. Solid State Electrochem. 15 (2011) 587.
  15. M. Aghazadeh, Electrochemical preparation and properties of nanostructured Co3O4 as supercapacitor material, J. Appl. Electrochem. 42 (2012) 89.
  16. B. Cullity, Elements of X-ray Diffraction, A.W.R.C. Inc., Massachusetts,1967.
  17. R. Venkatnarayan, V. Kanniah, and A. Dhathathreya, Journal of Chemical Sciences, vol. 188, p. 179, 2006.
  18. M.Q. Wu, J.H. Gao, S.R. Zhang, A. Chen, J. Porous Mater. 13 (2006) 407.
  19. Estepa L and Daudon M, Biospectroscopy, 1997, 3, 347-369.
  20. Wu S H and Chen D H, J Colloid Interface Sci., 2003, 259, 282-286.
  21. Saravanan K, Govindarajan S, Chellappa D (2005) Preparation, Characterization, and Thermal Reactivity of Divalent Transition Metal Hydrazine Pyridine-2,n-dicarboxylates (n=3, 4, 5, and 6). Synth React. Inorg. Met.-Org. Chem. 34:353-370
  22. Koutzarova T, Kolev S, Ghelev C, Paneva D and Nedkov I, Phys Stat Sol (c)., 2006, 3, 1302-1307
  23. S.K. Meher, G.R. Rao, Effect of microwave on the nanowire morphology, optical, magnetic, and pseudocapacitance behavior of Co3O4, J. Phys. Chem. C 115 (2011) 25543.
  24. L.Q. Mai, F. Yang, Y.L. Zhao, X. Xu, L. Xu, Y.Z. Luo, Nat. Commun. 2 (2011) 381e385.
  25. M.Q. Wu, J.H. Gao, S.R. Zhang, C. Ai, J. Power Sources 159 (2006) 365e369.
  26. Khalid, S. et al. Microwave Assisted Synthesis of Porous NiCo2O4 Microspheres: Application as High Performance Asymmetric and Symmetric Supercapacitors with Large Areal Capacitance. Sci. Rep. 6, 22699; doi: 10.1038/srep22699 (2016).
  27. S. Devaraj, N. Munichandraiah, Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties, J. Phys. Chem. C 112 (2008) 4406.
  28. S.K. Meher, G.R. Rao, Ultralayered CO3O4 for high-performance supercapacitor applications, J. Phys. Chem. C 115 (2011) 15646.
  29. Feng, J.-X., Ye, S.-H., Lu, X.-F., Tong, Y.-X. & Li, G.-R. Asymmetric Paper Supercapacitor Based on Amorphous Porous Mn3O4 Negative Electrode and Ni(OH)2 Positive Electrode: A Novel and High-Performance Flexible Electrochemical Energy Storage Device. ACS Appl. Mat. Interfaces 7, 11444-11451 (2015).
  30. Luan, F. et al. High energy density asymmetric supercapacitors with a nickel oxide nanoflake cathode and a 3D reduced graphene oxide anode. Nanoscale 5, 7984-7990 (2013).
  31. Chen, P.-C., Shen, G., Shi, Y., Chen, H. & Zhou, C. Preparation and Characterization of Flexible Asymmetric Supercapacitors Based on Transition-Metal-Oxide Nanowire/Single-Walled Carbon Nanotube Hybrid Thin-Film Electrodes. ACS Nano 4, 4403-4411 (2010).
  32. Abolanle S. Adekunle, Bolade O. Agboola, Kenneth I. Ozoemena, Eno E. Ebenso, John A.O. Oyekunle, Oluwafemi S. Oluwatobi, Joel N. Lekitima,  Int. J. Electrochem. Sci., 10 (2015) 3414 – 3430
  33. Wang, D.-W., Li, F. & Cheng, H.-M. Hierarchical porous nickel oxide and carbon as electrode materials for asymmetric supercapacitor. J. Power Sources 185, 1563–1568 (2008).
  34. Chen, H. et al. One-Step Fabrication of Ultrathin Porous Nickel Hydroxide-Manganese Dioxide Hybrid Nanosheets for Supercapacitor Electrodes with Excellent Capacitive Performance. Adv. Energy Mater. 3, 1636–1646 (2013).
  35. Makgopa, K. et al. A high-rate aqueous symmetric pseudocapacitor based on highly graphitized onion-like carbon/birnessite-type manganese oxide nanohybrids. J. Mat. Chem. A 3, 3480-3490 (2015).

Downloads

Published

2017-04-30

Issue

Section

Research Articles

How to Cite

[1]
Selvapriya R, Alagar M, " High Performance Asymmetric Supercapacitor based on spinel Co3O4 nanoparticles, International Journal of Scientific Research in Science and Technology(IJSRST), Online ISSN : 2395-602X, Print ISSN : 2395-6011, Volume 3, Issue 3, pp.444-450, March-April-2017.