Optimizing Outfit Composition Using Machine Learning via Genetic Algorithm

Authors(2) :-Sayali Rajendra Anfat, Dr. Anup Gade

Composing fashion outfits involves deep understanding of fashion standards while incorporating creativity for choosing multiple fashion items (e.g., Jewelry, Bag, Pants, Dress). In fashion websites, popular or high-quality fashion outfits are usually designed by fashion experts and followed by large audiences. In this paper we propose composition of Fashion outfits using Genetic algorithm. We use a dataset for evaluating the performance of genetic algorithm and clustering algorithms on dataset

Authors and Affiliations

Sayali Rajendra Anfat
Tulsiramji Gaikwad Patil College of Engineering Nagpur, Maharashtra, India
Dr. Anup Gade
Tulsiramji Gaikwad Patil College of Engineering Nagpur, Maharashtra, India

Genetic Algorithm, Clustering

  1. REFERENCES
  2. Z Al-Halah, R. Stiefelhagen, and K. Grauman. Fashion forward: Forecasting visual style in fashion. In ICCV, 2017.
  3. L Bossard, M. Dantone, C. Leistner, C. Wengert, T. Quack, and L. Van Gool. Apparel classification with style. In ACCV, 2012.
  4. J Carbonell and J. Goldstein. The use of mmr, diversitybased reranking for reordering documents and producing summaries. In ACM SIGIR, 1998.
  5. H Chen, A. Gallagher, and B. Girod. Describing clothing by semantic attributes. In ECCV, 2012.
  6. J Chen, J. Zhu, Z. Wang, X. Zheng, and B. Zhang. Scalable inference for logistic-normal topic models. In Advances in Neural Information Processing Systems (NIPS), 2013.
  7. Q Chen, J. Huang, R. Feris, L. M. Brown, J. Dong, and S. Yan. Deep domain adaptation for describing people based on fine-grained clothing attributes. In CVPR, 2015.
  8. J Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A Large-Scale Hierarchical Image Database. In CVPR, 2009.
  9. W Di, C. Wah, A. Bhardwaj, R. Piramuthu, and N. Sundaresan. Style finder: Fine-grained clothing style detection and retrieval. In CVPR, 2013.
  10. Q Dong, S. Gong, and X. Zhu. Multi-task curriculum transfer deep learning of clothing attributes. In WACV. IEEE, 2017.
  11. K. El-Arini, G. Veda, D. Shahaf, and C. Guestrin. Turning down the noise in the blogosphere. In ACM SIGKDD, 2009.
  12. J. Fu, J. Wang, Z. Li, M. Xu, and H. Lu. Efficient clothing retrieval with semantic-preserving visual phrases. In ACCV, 2012.
  13. B. Gong, W. Chao, K. Grauman, and F. Sha. Diverse sequential subset selection for supervised video summarization. In NIPS, 2014.
  14. C. Guestrin, A. Krause, and A. Singh. Near-optimal sensor placements in gaussian processes. In ICML, 2005.
  15. X. Han, Z. Wu, Y.-G. Jiang, and L. S. Davis. Learning fashion compatibility with bidirectional lstms. ACM MM, 2017.
  16. K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In CVPR, 2016.
  17. R. He, C. Packer, and J. McAuley. Learning compatibility across categories for heterogeneous item recommendation. In ICDM, 2016.
  18. W.-L. Hsiao and K. Grauman. Learning the latent “look”: Unsupervised discovery of a style-coherent embedding from fashion images. In ICCV, 2017.
  19. Y. Hu, X. Yi, and L. Davis. Collaborative fashion recommendation: A functional tensor factorization approach. In ACM MM, 2015.

Publication Details

Published in : Volume 4 | Issue 7 | March-April 2018
Date of Publication : 2018-04-30
License:  This work is licensed under a Creative Commons Attribution 4.0 International License.
Page(s) : 412-418
Manuscript Number : IJSRST17333
Publisher : Technoscience Academy

Print ISSN : 2395-6011, Online ISSN : 2395-602X

Cite This Article :

Sayali Rajendra Anfat, Dr. Anup Gade, " Optimizing Outfit Composition Using Machine Learning via Genetic Algorithm", International Journal of Scientific Research in Science and Technology(IJSRST), Print ISSN : 2395-6011, Online ISSN : 2395-602X, Volume 4, Issue 7, pp.412-418, March-April-2018.
Journal URL : http://ijsrst.com/IJSRST17333

Article Preview