Synthetic Nitrogen-containing Polymers and their Application as Copper Supports in Click Chemistry

Authors

  • Hallan Bruno de Matos Angeira Gomes  Lab. de Química Organica, Instituto de Quimica, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
  • Cristiane Aragao de Souza Bastardis  Lab. de Química Organica, Instituto de Quimica, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
  • Thays Pontes de Freitas  Lab. de Química Organica, Instituto de Quimica, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
  • Pedro Ivo Canesso Guimaraes  Lab. de Química Organica, Instituto de Quimica, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
  • Ayres Guimaraes Dias  Lab. de Química Organica, Instituto de Quimica, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
  • Jorge Luiz de Oliveira Domingos  Lab. de Química Organica, Instituto de Quimica, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil

Keywords:

polyvinylimidazole divinylbenzene; polystyryl pyridine; copper supported; click chemistry

Abstract

Two nitrogen-containing polymers were synthesized and used as support for CuSO4 to evaluate their catalytic activity in 1,3-heterodipolar cycloaddition reactions (1,3-DC) of benzylazide and ethyl propiolate. Polyvinylimidazole (PVI-DVB) was obtained by vinylimidazole polymerization with divinylbenzene and polystyryl pyridine (PSP) was prepared by condensation of lutidine and terephtaldehyde and with collidine as the reticulating agent. The activity was measured by titration with staNdard HCl solution, and PVI-DVB showed 4.6 mEg/g and PSP 0.7 mEg/g polymer. Impregnation with copper was possible by stirring the polymers in aqueous CuSO4 solution. PSP fixed less copper (~0.2 %) than PVI-DVB that fixed thirty times more (6.2 %). The 1,3-DC under microwave irradiation, in the presence of PSP-Cu or PVI-DVB-Cu, gave origin to quantitative yields of the triazoles, and 1,4 regioisomer was the main product. By reusing the copper supported (4X), no changes in yields were observed, only a small decrease in regioselectivity.

References

  1. Merrifield, R. B. C.; J. Amer. Chem. Soc. 1963, 85, 2149; Kirschning, A.; Monenschein, H.; Wittenberg, R. Angew. Chem. Int. Ed. 2001, 40, 650; Verlander. M. Int. J. Pept. Res. Ther. 2007, 13, 75; Mitcheal, A. R. Biopolymers. 2008; 90, 175; Zompra, A. A.; Galanis, A. S.; Werbitzky, O.; Albericio, F. Future Med. Chem. 2009, 1, 361; Chandrudu, S., Simerska, P.; Toth, I. Molecules 2013, 18, 437; Palomo, J. M. RSC Adv. 2014, 4, 32658.
  2. Maurizio Benaglia, M.; Puglisi, A.; Cozzi, F. Chem. Rev. 2003, 103, 3401; Leadbeater, N. E.; Marco, M. Chem. Rev. 2002, 102, 3217; Clapham, B.; Reger, T. S.; Janda, K. D. Tetrahedron 2001, 57, 4637.
  3. Kricheldorf, H. R.; Nuyken, O.; Swifit, G.; Handbook of Polymer Synthesis, Marcel Dekker, New York, 2th ed.; NY, U.S.A, 2005, pp. 138; Fink, J. K. Handbook of Engineering and Specialty Thermoplastics: Water Soluble Polymers, Volume 2, John Wiley & Sons, Hoboken, NJ, USA, 2011, pp. 189.
  4. Fink, J. K. Handbook of Engineering and Specialty Thermoplastics: Water Soluble Polymers, Volume 2, John Wiley & Sons, Inc., Hoboken, NJ, USA, 2011, pp. 251.
  5. Kureshy, R. I.; Khan, N. H.; Abdi, S. H. R.; Iyer, P. React. Funct. Polym. 1997, 34, 153.
  6. Giacomelli, C.; Giacomelli, F. C.; Schmidt, V.; Santana, A. L.; Pires, A. T. N.; Bertolino, J. R.; Spinelli, A. J. Braz. Chem. Soc. 2005, 16, 9.
  7. Skouta, R.; Wei, S.; Breslow, R. J. Am. Chem. Soc. 2009, 131, 15604.
  8. Velu, U.; Stanislaus, A.; Virupaiah, G.; Shivakumaraiah, G.; Balasubramanian, V. Chin. J. Catal. 2011, 32, 280; Khaligh, N. G.; Mihankhah, T. Chin. J. Catal. 2013, 34, 2167; Sarkar, S. M.; Uozumi, Yamada, Y. M. A. Angew. Chem. Int. Ed. 2011, 50, 9437.
  9. Schemeth, D.; Kappacher, C.; Rainer, M.; Thalinger, R.; Bonn, G. K. Talanta 2016, 153, 177.
  10. Hoogenboom, R.; Schubert, U. S. Macromol. Rap. Commun 2007, 28, 368.
  11. Chauveau, E.; Marestin, C.; Martin, V.; Mercier, R. Polymer 2008, 49, 5209.
  12. Eng, F. P.; Ishida, H. J. Mat. Sci. 1986, 21, 1561; Jang, J.; Ishida, H. J. Appl. Pol. Sci. 1993, 49, 1957.; Orth, E. S.; Campos, R. B. J. Braz. Chem. Soc. 2016, 27, 285.
  13. Huisgen, R. Angew. Chem., Int. Ed. 1963, 2, 565; Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Angew. Chem., Int. Ed. 2001, 40, 2004; Haldón, E.; Nicasio, M. C.; Pérez, P. J. Org. Biomol. Chem. 2012, 13, 9258.
  14. Overberger, C. G.; Vorchheimer, N. J. Am. Chem. Soc. 1963, 85, 951. For recent technics see:Yamada, Y. M. A.; Sarkar, S. M.; Uozumi, Y. J. Am. Chem. Soc. 2012, 134, 9285; Jing Zhang, J.; Ma, C.; Zhu, X.; Lu, Y.; Meng, H.; Li, C.; Chen, B.; Lei, Z. Ind. Eng. Chem. Res. 2016, 55, 8079.
  15. Tsuchida, E.; Nishide, H. Adv. Polym. Sci. 1977, 24, 1.
  16. For reviews of MO used in polymerizations see: Hoogenboom, R.; Schubert, U. S. Macromol. Rapid Commun. 2007, 28, 368; Zhang, C.; Liao, L.; Gong, S. Green Chem. 2007, 9, 303; Tarasova, N.; Zanin, A.; Burdakov, K.; Sobolev, P. Polym. Adv. Technol. 2015, 26, 687.
  17. Lee, J.; Werner, F. J. Org. Chem. 1944, 9, 537.
  18. Ropars, M. P.; Bloch, B. M. US pat 3994862 A, 1976 (CA 84:18310); Ropars, M. P.; Court, S.; Bloch, B. M. US pat 4,525,573, 1985 (CA 103:54602); Bloch, B.; Maquart, J.-G. Polystyrylpyridine Resins and Composites, Wiley Encyclopedia of Composites, John Wiley & Sons, New York, USA; 2012, 1.
  19. Solvents used in laboratory to evaluate polymer solubility were: ethyl acetate, dioxane, ethyl ether, dichlorometane, toluene, DMF, methanol, ethanol and acid aqueous and hydroalcoholic solutions of HCl and H2SO4 (10 %).
  20. Eng, F. P.; H., Ishida J. Electrochem. Soc. 1988, 135, 603; Lippert, J. L.; Robertson, J. A.; Havens, J. R.; Tan, J. S. Macromolecules 1985, 18, 63.
  21. Franco, C. V., Paula, M. M. S.; Goulart, G.; Lima, L. F. C. P.; Noda, L. K.; Gonçalves, N. S. Materials Letters 2006, 60, 2549.
  22. For other examples of Cu (II) catalysis see: Monguchi, Y.; Nozaki, K.; Maejima, T.; Shimoda, Y.; Sawama, Y.; Kitamura, Y.; Kitadeb, Y.; Sajiki, H. Green Chem. 2013, 15, 490 and ref. 25.
  23. Hansen, S. G.; Jensen, H. H. Synlett 2009, 3275.
  24. Copper residue could be totally removed from triazole product by extraction with NH4OH.
  25. Kuang, G.; Michaels, H. A.; Simmons, J. T.; Clark, R. J.; Zhu, L. J. Org. Chem. 2010, 75, 654.

Downloads

Published

2017-04-30

Issue

Section

Research Articles

How to Cite

[1]
Hallan Bruno de Matos Angeira Gomes, Cristiane Aragao de Souza Bastardis, Thays Pontes de Freitas, Pedro Ivo Canesso Guimaraes, Ayres Guimaraes Dias, Jorge Luiz de Oliveira Domingos, " Synthetic Nitrogen-containing Polymers and their Application as Copper Supports in Click Chemistry , International Journal of Scientific Research in Science and Technology(IJSRST), Online ISSN : 2395-602X, Print ISSN : 2395-6011, Volume 3, Issue 3, pp.05-11, March-April-2017.