Phytase Production by Thermophilic Fungi and Their Applications in the Animal Feed, Poultry Feed, Food Industry and as a Prebiotics

Authors

  • Farzana Nazir  M.Phil Microbiology student at Institute of Industrial Biotechnology, GC University Lahore, Pakistan
  • Sikander Ali  Associate Professor at Institute of Industrial Biotechnology, GC University Lahore, Pakistan
  • Javeriamushtaq  M.Phil Microbiology student at Institute of Industrial Biotechnology, GC University Lahore, Pakistan
  • Hira Sarfaraz  M.Phil Microbiology student at Institute of Industrial Biotechnology, GC University Lahore, Pakistan

Keywords:

Phytase, Thermophilic Fungi, Mesophilic Fungi, fermentation, Recombinant DNA Technology

Abstract

Abundant applications are possessed by the thermotolerant phytases, and therefore, better-quality and heightened assembly of these enzymes will increase its industrialized functions. In addition to dropping the price of subconscious food supplement production, part of it is in decreasing ecological contamination will be delightful along with growing environmental exhaustion. Thus, the usage of a innovative temperature forbearing microscopic bases s of unknown environment can help for the foundation of powerful phytate production. For industrial applications, thermophilic potential containing moulds are a promising reservoir of thermostable enzymes. Thermophilic fungi derived enzymes frequently stand higher temperatures than other enzymes isolated from mesophilic microbes, and few of them exhibit stability still at 70-80oC.In addition, when the phytate production were need to be spent in animal food manufacturing industry, their would be requirement of breakdown of a phytase enzyme in temperature tolerant conditions. Combining strategies to DNA recombination innovation and building of a protein compelling regular phytate enzyme assets will be the partner of battles of acquiring phytate enzyme catalysts with enhance thermo tolerance.

References

  1. Antrim, D. S. (1997). ? Newspaper coverage of learning disabilities. Education, 118(1), 145.
  2. Alves, A., Dias, A. G., & Sinha, K. (2016). The 750 GeV S-cion: Where else should we look for it?. Physics Letters B, 757, 39-46.
  3. Boling, S. D., Douglas, M. W., Shirley, R. B., Parsons, C. M., & Koelkebeck, K. W. (2000). The effects of various dietary levels of phytase and available phosphorus on performance of laying hens. Poultry Science, 79(4), 535-538.
  4. Bali, A., & Satyanarayana, T. (2001). Microbial phytases in nutrition and combating phosphorus pollution. Everyman’s Sci, 4, 207-209.
  5. Berka, R. M., Grigoriev, I. V., Otillar, R., Salamov, A., Grimwood, J., Reid, I., ... & Henrissat, B. (2011). Comparative genomic analysis of the thermophilic biomass-degrading fungi Myceliophthora thermophila and Thielavia terrestris. Nature biotechnology, 29(10), 922-927.
  6. Chantasartrasamee, K., Ayuthaya, D. I. N., Intarareugsorn, S., & Dharmsthiti, S. (2005). Phytase activity from Aspergillus oryzae AK9 cultivated on solid state soybean meal medium. Process Biochemistry, 40(7), 2285-2289.
  7. Coban, H. B., Demirci, A., & Turhan, I. (2015). Microparticle-enhanced Aspergillus ficuum phytase production and evaluation of fungal morphology in submerged fermentation. Bioprocess and biosystems engineering, 38(6), 1075-1080.
  8. Dahiya, S., Singh, N., & Rana, J. S. (2009). Optimization of growth parameters of phytase producing fungus using RSM.
  9. Dahiya, S., & Singh, N. (2014). Isolation and biochemical characterization of a novel phytase producing bacteria Bacillus cereus isolate MTCC 10072.
  10. De Jonge, Esmaeilipour, O., Van Krimpen, M. M., Jongbloed, A. W., L. H., & Bikker, P. (2016). Effects of temperature, pH, incubation time and pepsin concentration on the in vitro stability of intrinsic phytase of wheat, barley and rye. Animal feed science and technology, 175(3), 168-174.
  11. Engelen, A. J., van der Heeft, F. C., Randsdorp, P. H., & Smit, E. L. (1994). Simple and rapid determination of phytase activity. Journal of AOAC International, 77(3), 760.
  12. Erpel, F., Restovic, F., & Arce-Johnson, P. (2016). Development of phytase-expressing chlamydomonas reinhardtii for monogastric animal nutrition. BMC biotechnology, 16(1), 29.
  13. Fredrikson, M., Biot, P., Alminger, M. L., Carlsson, N. G., & Sandberg, A. S. (2001). Production process for high-quality pea-protein isolate with low content of oligosaccharides and phytate. Journal of agricultural and food chemistry, 49(3), 1208-1212.
  14. Golovan, S. P., Meidinger, R. G., Ajakaiye, A., Cottrill, M., Wiederkehr, M. Z., Barney, D. J., ... & Laursen, J. (2001). Pigs expressing salivary phytase produce low-phosphorus manure. Nature biotechnology, 19(8), 741-745.
  15. Greiner, R., & Farouk, A. E. (2007). Purification and characterization of a bacterial phytase whose properties make it exceptionally useful as a feed supplement. The Protein Journal, 26(7), 467.
  16. Gaind, S., & Singh, S. (2015). Production, purification and characterization of neutral phytase from thermotolerant Aspergillus flavus ITCC 6720. International Biodeterioration & Biodegradation, 99, 15-22.
  17. Hirimuthugoda, N. Y., Chi, Z., & Wu, L. (2007). Probiotic yeasts with phytase activity identified from the gastrointestinal tract of sea cucumbers. SPC Beche de Mer Information Bullet?????????? in, 26, 31-33.
  18. Haros, M., Bielecka, M., Honke, J., & Sanz, Y. (2007). Myo-inositol hexakisphosphate degradation by Bifidobacterium infantis ATCC 15697. International journal of food microbiology, 117(1), 76-84.
  19. Hesham El Enshasy, Othman, N. Z., Elsayed, E. A., Malek, R. A., Ramli, S., Masri, H. J., Sarmidi, M. R. (2014). Aeration Rate Effect on the Growth Kinetics, Phytase Production and Plasmid Stability of Recombinant Escherichia coli BL21 (DE3). Jourmal of Pure and Applied Microbiology, 8(4).
  20. Johri, J. K., Surange, S., & Nautiyal, C. S. (1999). Occurrence of salt, pH, and temperature-tolerant, phosphate-solubilizing bacteria in alkaline soils. Current Microbiology, 39(2), 89-93.
  21. Jenab, M. A. Z. D. A., & Thompson, L. U. (2002). Role of phytic acid in cancer and other diseases (pp. 225-248). CRC Press: Boca Raton, FL.
  22. Jain, J., & Singh, B. (2016). Characteristics and biotechnological applications of bacterial phytases. Process Biochemistry, 51(2), 159-169.
  23. Kvist, T., Mengewein, A., Manzei, S., Ahring, B. K., & Westermann, P. (2005). Diversity of thermophilic and non-thermophilic crenarchaeota at 80 C. FEMS microbiology letters, 244(1), 61-68.
  24. Kuhar, S., Nair, L. M., & Kuhad, R. C. (2008). Pretreatment of lignocellulosic material with fungi capable of higher lignin degradation and lower carbohydrate degradation improves substrate acid hydrolysis and the eventual conversion to ethanol. Canadian journal of microbiology, 54(4), 305-313.
  25. Karnaouri, A., Topakas, E., Paschos, T., Taouki, I., & Christakopoulos, P. (2013). Cloning, expression and characterization of an ethanol tolerant GH3 ?-glucosidase from Myceliophthora thermophila. PeerJ, 1, e46.
  26. Li, H., Huang, G., Meng, Q., Ma, L., Yuan, L., Wang, F., & Jiang, R. (2011). Integrated soil and plant phosphorus management for crop and environment in China. A review. Plant and Soil, 349(1-2), 157-167.
  27. Margaritis, A., Merchant, R., & Yaguchi, M. (1983). Xylanase, CM-cellulase and avicelase production by the thermophilic fungus Sporotrichum thermophile. Biotechnology Letters, 5(4), 265-270.
  28. Margaritis, A., & Merchant, R. F. (1986). Optimization of fermentation conditions for thermostable cellulase production byThielavia terrestris. Journal of Industrial Microbiology, 1(3), 149-156.
  29. McClendon, S. D., Batth, T., Petzold, C. J., Adams, P. D., Simmons, B. A., & Singer, S. W. (2012). Thermoascus aurantiacus is a promising source of enzymes for biomass deconstruction under thermophilic conditions. Biotechnology for biofuels, 5(1), 54.
  30. Rani, R., & Ghosh, S. (2011). Production of phytase under solid-state fermentation using Rhizopus oryzae: Novel strain improvement approach and studies on purification and characterization. Bioresource technology, 102(22), 10641-10649.
  31. Shears, S. B. (1998). Transcriptional regulation: a new dominion for inositol phosphate signaling?. Bioessays, 22(9), 786-789.
  32. Singh, B., & Satyanarayana, T. (2006). A marked enhancement in phytase production by a thermophilic mould Sporotrichum thermophile using statistical designs in a cost?effective cane molasses medium. Journal of applied microbiology, 101(2), 344-352.
  33. Singh, B., & Satyanarayana, T. (2006). Phytase production by thermophilic mold Sporotrichum thermophile in solid-state fermentation and its application in dephytinization of sesame oil cake. Applied Biochemistry and Biotechnology, 133(3), 239-250.
  34. Singh, B., & Satyanarayana, T. (2011). Microbial phytases in phosphorus acquisition and plant growth promotion. Physiology and Molecular Biology of Plants, 17(2), 93-103.
  35. Salmon, D. N. X., Spier, M. R., Soccol, C. R., de Souza Vandenberghe, L. P., Montibeller, V. W., Bier, M. C. J., & Faraco, V. (2016). Analysis of inducers of xylanase and cellulase activities production by Ganoderma applanatum LPB MR-56. Fungal biology, 118(8), 655-662.
  36. Sato, V. S., Jorge, J. A., & Guimar?es, L. H. S. (2016). Characterization of a Thermotolerant Phytase Produced by Rhizopus microsporus. Applied biochemistry and biotechnology, 179(4), 610-624.
  37. Tan, B., Ai, Q., Mai, K., Zhang, W., Xu, W., Zhang, C., & Li, H. (2016). Effects of exogenous enzymes (phytase, non-starch polysaccharide enzyme) in diets on growth, feed utilization, nitrogen and phosphorus excretion of Japanese seabass, Lateolabrax japonicus. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 147(2), 502-508.
  38. Vats, P., & Banerjee, U. C. (2004). Production studies and catalytic properties of phytases (myo-inositolhexakisphosphate phosphohydrolases): an overview. Enzyme and Microbial Technology, 35(1), 3-14.
  39. Vasiljevic, T., & Shah, N. P. (2008). Probiotics?from Metchnikoff to bioactives. International Dairy Journal, 18(7), 714-728.
  40. Wojtczak, G., Breuil, C., Yamada, J., & Saddler, J. N. (1987). A comparison of the thermostability of cellulases from various thermophilic fungi. Applied Microbiology and Biotechnology, 27(1), 82-87.
  41. YuzhiMiao, Xu, H., Fei, B., Qiao, D., & Cao, Y. (2013). Expression of food-grade phytase in Lactococcus lactis from optimized conditions in milk broth. Journal of bioscience and bioengineering, 116(1), 34-38.

Downloads

Published

2017-06-30

Issue

Section

Research Articles

How to Cite

[1]
Farzana Nazir, Sikander Ali, Javeriamushtaq, Hira Sarfaraz, " Phytase Production by Thermophilic Fungi and Their Applications in the Animal Feed, Poultry Feed, Food Industry and as a Prebiotics, International Journal of Scientific Research in Science and Technology(IJSRST), Online ISSN : 2395-602X, Print ISSN : 2395-6011, Volume 3, Issue 4, pp.415-424, May-June-2017.