Electrochemical Sensor for the Determination of Hydrazine Using MWCNT/Dopamine Dithiocarbamate Modified Electrode

Authors

  • J. Kavitha  Department of Analytical Chemistry, University of Madras, Guindy Campus, Chennai, Tamil Nadu, India
  • M. Devendiran  Department of Analytical Chemistry, University of Madras, Guindy Campus, Chennai, Tamil Nadu, India
  • K. Krishna Kumar  Department of Analytical Chemistry, University of Madras, Guindy Campus, Chennai, Tamil Nadu, India
  • S. Sriman Narayanan  Department of Analytical Chemistry, University of Madras, Guindy Campus, Chennai, Tamil Nadu, India

Keywords:

Rapid Development, Effectiveness, Assessment, Monitoring, Management, Planning

Abstract

An electrochemical sensor for the determination of hydrazine was developed using MWCNT/Dopamine dithiocarbamate (DDTC) modified electrode. DDTC was prepared using Dopamine and carbondisulphide in ammoniacal medium. The formation of DDTC was confirmed by FTIR spectroscopy. A modified electrode was prepared using the DDTC and was characterized by cyclic voltammetry. Hydrazine was found to undergo electrocatalytic oxidation with this modified electrode. Under optimal conditions, the modified electrode showed good performance for the electrocatalytic oxidation of hydrazine. The modified electrode exhibited a linear range from 1.9 M to 740.7 M with a correlation coefficient of 0.9984 for the determination of hydrazine. Hydrodynamic and chronoamperometric experiments have revealed that the modified electrode can be used for the determination of Hydrazine in flow systems.

References

  1. A. Umar, S.K. Kansal, S.K. Mehta, Sensors and Actuators B?: Chemical Highly-sensitive and selective detection of hydrazine at gold electrode modified with PEG-coated CdS nanoparticles, Sensors Actuators B. Chem. 188 (2013) 372-377. doi:10.1016/j.snb.2013.06.095.
  2. S.K. Mehta, A. Umar, Talanta Highly sensitive hydrazine chemical sensor based on mono-dispersed rapidly synthesized PEG-coated ZnS nanoparticles, Talanta. 85 (2011) 2411-2416. doi:10.1016/j.talanta.2011.07.089.
  3. M. Mazloum-ardakani, A. Khoshroo, Electrochimica Acta An electrochemical study of benzofuran derivative in modified electrode-based CNT / ionic liquids for determining nanomolar concentrations of hydrazine, Electrochim. Acta. 103 (2013) 77-84. doi:10.1016/j.electacta.2013.04.062.
  4. A. Umar, M. Muzibur, S.H. Kim, J.F. Rusling, U.S. Schubert, A. Umar, et al., Zinc oxide nanonail based chemical sensor for hydrazine detection , 7345 (2008) 1-4. doi:10.1039/b711215g.
  5. J. Liu, Y. Li, X. Huang, C @ ZnO nanorod array-based hydrazine electrochemical sensor with improved sensitivity and stability, (2010) 8693-8697. doi:10.1039/c0dt00258e.
  6. Y. Luo, X. Sun, Synthesis of Au nanoparticles decorated graphene oxide nanosheets?: Noncovalent functionalization by TWEEN 20 in situ reduction of aqueous chloroaurate ions for hydrazine detection and catalytic reduction of, J. Hazard. Mater. 197 (2011) 320-326. doi:10.1016/j.jhazmat.2011.09.092.
  7. M.U.A. Prathap, V. Anuraj, B. Satpati, R. Srivastava, Facile preparation of Ni ( OH ) 2 - MnO 2 hybrid material and its application in the electrocatalytic oxidation of hydrazine, J. Hazard. Mater. 262 (2013) 766-774. doi:10.1016/j.jhazmat.2013.09.050.
  8. C.M.L. and Y.L. Yu Ding, Ying Wang, Lichun Zhang, Heng Zhang, Preparation of TiO 2 - Pt hybrid nanofibers and their application for sensitive hydrazine detection ?, Nanoscale. 3 (2011) 1149-1157. doi:10.1039/c0nr00773k.
  9. B. Vellaichamy, P. Periakaruppan, S.K. Ponnaiah, A new in-situ synthesized ternary CuNPs-PANI-GO nano composite for selective detection of carcinogenic hydrazine, Sensors Actuators B Chem. 245 (2017) 156-165. doi:10.1016/j.snb.2017.01.117.
  10. L. Cui, C. Ji, Z. Peng, L. Zhong, C. Zhou, L. Yan, et al., Unique Tri-Output Optical Probe for Speci fi c and Ultrasensitive Detection of Hydrazine, (2014).
  11. V.A. Online, S. Subramanian, S. Narayanasastri, A. Reddy, K. Reddy, Doping-induced detection and determination of propellant grade hydrazines by a kinetic spectrophotometric method based on nano and conventional polyaniline using halide ion releasing additives ?, RSC Adv. 4 (2014) 27404-27413. doi:10.1039/c4ra02296c.
  12. J. Oh, H. Shin, Simple and sensitive determination of hydrazine in drinking water by ultra-high-performance liquid chromatography - tandem mass spectrometry after derivatization with naphthalene-2 , 3-dialdehyde, J. Chromatogr. A. 1395 (2015) 73-78. doi:10.1016/j.chroma.2015.03.051.
  13. J. Liu, W. Zhou, T. You, F. Li, E. Wang, S. Dong, Detection of Hydrazine , Methylhydrazine , and Isoniazid by Capillary Electrophoresis with a Palladium-Modified Microdisk Array Electrode, Anal. Chem. 68 (1996) 3350-3353.
  14. J. Zen, A.S. Kumar, H. Wang, A dual electrochemical sensor for nitrite and nitric oxide, (2000) 2-5. doi:10.1039/b008176k.
  15. G.E. Collins, Sensitive , fluorescent detection of hydrazine via derivatization with 2 , 3-naphthalene dicarboxaldehyde, 284 (1993) 207-215.
  16. J. Wang, M.P. Chatrathi, B. Tian, R. Polsky, Capillary Electrophoresis Chips with Thick-Film Amperometric Detectors?: Separation and Detection of Hydrazine Compounds, Electroanalysis. 12 (2000) 691-694.
  17. Chemical Studies on Tobacco Smoke Quantitative Analysis of Hydrazine in Tobacco and Cigarette Smoke, Anal. Chem. 46 (1974) 885-889.
  18. Y. Liu, Y. Li, X. He, In situ synthesis of ceria nanoparticles in the ordered mesoporous carbon as a novel electrochemical sensor for the determination of hydrazine, Anal. Chim. Acta. 819 (2014) 26-33. doi:10.1016/j.aca.2014.02.025.
  19. M. Mazloum-ardakani, A. Khoshroo, L. Hosseinzadeh, Simultaneous determination of hydrazine and hydroxylamine based on fullerene-functionalized carbon nanotubes / ionic liquid nanocomposite, Sensors Actuators B. Chem. 214 (2015) 132-137. doi:10.1016/j.snb.2015.03.010.
  20. A. Ejaz, M.S. Ahmed, S. Jeon, Highly efficient benzylamine functionalized graphene supported palladium for electrocatalytic hydrazine determination, Sensors Actuators B. Chem. 221 (2015) 1256-1263. doi:10.1016/j.snb.2015.07.093.
  21. D. Ravi Shankaran, S. Sriman Narayanan, Electrochemical determination of hydrazine based on chemically modified electrode, Res. J. Chem. Environ 5 (2001) 21.
  22. D. Jayasri, S.S. Narayanan, Amperometric determination of hydrazine at manganese hexacyanoferrate modified graphite - wax composite electrode, J. Hazard. Mater. 144 (2007)348-354. doi:10.1016/j.jhazmat.2006.10.038.
  23. A. Hajian, A. Abbas, A. Afraz, M. Naja, Electrosynthesis of high-density polythiophene nanotube arrays and their application for sensing of riboflavin, 199 (2014) 150-155.
  24. M. Campus, Sensors and Actuators B?: Chemical Hydrazine oxidation at gold nanoparticles and poly ( bromocresol purple ) carbon nanotube modified glassy carbon electrode, 196 (2014) 610-618. doi:10.1016/j.snb.2014.02.061.
  25. K. Suresh-Kumar, W. Hui-Fen, One-pot synthesis of dopamine dithiocarbamate functionalized gold nanoparticles for quantitative analysis of small molecules and phosphopeptides in SALDI- and MALDI-MS, Analyst. 137 (2012) 1629-1638. doi:10.1039/c2an16008k.
  26. F. Scholz, B. Lange, Abrasive stripping voltammetry - an electrochemical solid state spectroscopy of wide applicability *, Trends Anal. Chem. 11 (1992) 359-367. doi:10.1016/0165-9936(92)80025-2

Downloads

Published

2017-08-31

Issue

Section

Research Articles

How to Cite

[1]
J. Kavitha, M. Devendiran, K. Krishna Kumar, S. Sriman Narayanan, " Electrochemical Sensor for the Determination of Hydrazine Using MWCNT/Dopamine Dithiocarbamate Modified Electrode, International Journal of Scientific Research in Science and Technology(IJSRST), Online ISSN : 2395-602X, Print ISSN : 2395-6011, Volume 3, Issue 6, pp.227-232, July-August-2017.