Preparation and Characterisation of Pure and Zn-doped SnO2 Nanoparticles

Authors

  • K. Sujatha  Assistant Professor, PG Department of Physics, Vellalar College for Women,Thindal, Tamilnadu, India
  • T. Seethalakshmi  Assistant Professor, PG Department of Physics, Karur Government College, Karur, Tamilnadu, India.

Keywords:

SnO2, Zn doping, FESEM, Optical Properties; Co-Precipitation Method.

Abstract

In this report,Pure and Zn- doped SnO2 nano powders were synthesized by co-precipitation method. The structure, surface morphology, optical, and functional groups were analyzed by X- ray diffraction, Field Emission Scanning Electron Microscope(FESEM), UV-Vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), photoluminescence spectra, Energy Dispersive Spectroscopy(EDAX) and cyclic voltammetric method, respectively. The results were compared with pure tin oxide nanoparticle. X-ray analysis shows that the obtained power has tetragonal rutile type structure with average crystallite size of 34 nm which reduced to 9 nm with Zn addition. Increase in band gap is observed from UV-Vis spectroscopy by the addition of zinc in SnO2. PL spectrum of the pure and doped samples detected two strong emission peaks at 437nm, 465nm due to the surface defect and oxygen vacancies in SnO2 nanoparticles. The electrochemical nature of the samples has been studied using cyclic voltammetric method.Thus the co-precipitation method is convenient, easy, simple, low cost and effective synthesis of nanoparticles.

References

  1. Ahn H. J., Choi H. C., Park K. W., Kim S.B., and Sung Y.E., Investigation of the structural and electrochemical properties of size-controlled SnO2 nanoparticles, J. Phys. Chem. B., 108, 9815?9820(2004).
  2. Chunjoong Kim., Mijung Noh., Myungsuk Choi., Jaephil Cho., Byungwo., and Park., Critical Size of a Nano SnO2 Electrode for Li-Secondary Battery, Chem. Mater. 17, 3297-3301(2005).
  3. Mayer J. W., Alford T.L., Characterization of the physical and electrical properties of Indium tin oxide on polyethylene napthalate, J.App. Phy. 98, 083705(2005).
  4. Pinna N., Neri G., Antonietti M., Niederberger M., Nonaqueous Synthesis of Nanocrystalline Semiconducting Metal Oxides for Gas Sensing, Angewandte Chemie International Edition, 43, 4345-4349(2004).
  5. Brinker C.J., Scherer S. W., Sol?Gel science: the physics and chemistry of sol?gel Processing, Academic Press, New York, (1990).
  6. Brinker C.J., Bunker B.C., Tallant D.R., Ward K.J., Kirkpatrick R.J., Structure of Sol-Gel Derived Inorganic Polymers: Silicates and Borates, ACS Symposium series, Chapter 26, 360 ,314-332(1988).
  7. Jones R.W., Fundamental Principf Sol-Gel Technology, Institute of metals, London (1989).
  8. Nagaveni K., Hedge M.S., Ravishankar N., Subbanna G.N., Madras G., Synthesis and structure of nanocrystalline TiO2 with lower band gap showing high photocatalytic activity, Langmuir, 20, 2900-2907(2004).
  9. Nagaveni K., Sivalingam G., Hegde M. S., and Madras G., Solar photocatalytic degradation of dyes: high activity of combustion synthesized nano TiO2 Appl. Catal. B Environ. 48, 83-93(2004).
  10. Carp O., Huisman C.L., Reller A., Photoinduced reactivity of titanium dioxide, Progress in Solid. State Chemistry, 32, 33?177(2004).
  11. Chen X., Mao S.S., Titanium dioxide nanomaterials: synthesis, properties, modifications and applications, Chemical Reviews, 107, 2891?2959(2007).
  12. Yang J., Mei S., Ferreira J. M. F., Hydrothermal synthesis of TiO2 nanopowders from tetraalkylammonium hydroxide peptized sols, Mater. Sci. Eng. C. 15, 183-185(2001).
  13. Rao K.J., Vaidhyanathan B., Ganguli M., Ramakrishnan P. A., Synthesis of inorganic solids using microwaves, Chem. Mate. 11, 882-895(1999).
  14. Bhat M. H., Chakravarthy B. P., Ramakrishnan P. A., Levasseur A., Rao K. J., Microwave synthesis of electrode materials for lithium batteries Bull. Mater. Sci. 23, 461(2000).
  15. Subramanian V., Chen C.L., Chou H.S., Fey G.T.K., Microwave-assisted solid-state synthesis of LiCoO2 and its electrochemical properties as a cathode material for lithium batteries, J. Mater. Chem,11 ,3348-3353. DOI: 10.1039/B105008G (2001).
  16. Liu, Y., Koep, E., Liu, M.: A highly sensitive and fast-responding SnO2 sensor fabricated by combustion chemical vapor deposition. Chem Mater 17, 3997(2005)
  17. Paraguay-Delgado, F., Ant?nez-Flores, W., Miki-Yoshida, M., Aguilar-Elguezabal, A., Santiago, P., Diaz, R., Ascencio, J.A.: Structural analysis and growing mechanisms for long SnO2 nanorods synthesized by spray pyrolysis. Nanotechnology 16, 688 (2005)
  18. Dai, Z.R., Gole, J.L., Stout, J.D., Wang, Z.L.: Tin oxide nanowires, nanoribbons, and nanotubes. J. Phys. Chem. B 106, 1274 (2002)
  19. Parthibavarman M., Hariharan V., Sekar C., High-sensitivity humidity sensor based on SnO2 nanoparticles synthesized by microwave irradiation method, Mater. Sci. Engg. C. 31, 840-844(2011),.
  20. Krishnakumar T., Jayaprakash R., Nicola Pinna, Singh V.N., Mehta B.R., Phani A. R., Microwave-assisted synthesis and characterization of flower shaped zinc oxide nanostructures,Materials Letters,63 ,242-245(2009).
  21. Jingran Su Youting Song, Daofan Zhang and Xinan Chang., Characterization of unidirectionally grown NaCl[sub 1-x]Br[sub x]O[sub 3] crystals, Powder Diffraction, 24 ,234(2009).
  22. James R Connoly, Introduction to X-ray Diffraction, Spring EPS 400-002(2007).
  23. Rozati S. M., Shadmani E., Effect of Zn Concentration On Physical Properties of Nanostructure Tin Oxide Films Prepared By Spray Pyrolysis Technique, Dig. J. Nanomate. Biostructures (DJNB) 6 ,365(2011).
  24. Chou L.J., Cai Y.C., Zhang B., Niu J.Z., Ji S.F., Li S.B., Oxidative coupling of methane over Na-Mn-W/SiO2 catalyst at higher pressure, React. Kinet. Catal.Lett. 76, 311?315(2002).
  25. Gaidi M., Hajjaji A., Smirani R., Bessais, El Khakni M.A., Structure and photoluminescence of ultrathin films of SnO2 nanoparticles synthesized by means of pulsed laser deposition, J. App. Phys. 108 ,063537(2010).
  26. Gajendiran J., Rajendran V., Size controlled and optical properties of Zn- doped SnO2 nanoparticles via sol-gel process Optoelectro. & Adv. Mater.Rapid Comm. 5, 44(2011).
  27. Tan L., Wang L., Wang Y., Hydrothermal synthesis of nanostructures with different morphologies and their optical properties, J. Nanomaterials, 2011, 16(2011).
  28. Mondal S.P., Ray S.K., Ravichandran J., Manna I., Temperature dependent growth and optical properties of SnO2 nanowires and nanobelts, Bulle. Mate. Sci. 33, 357-364(2010).
  29. Md Sin N.D., Mamat M. H., Musa M. Z., Abdul Aziz A., Rusop M., Influence of post heat treatment to the properties of ZnO thin film prepared by RF magnetron sputtering, Research and Development (SCOReD), IEEE Student Conference ,88-91(2012).
  30. K. Anandan, V. Rajendran, J. Phys. Sci. 19, 129 (2014)
  31. B .Orel,U. Lavvencic-stangar, Z. Crnjakorel, P. Bukorec and M. Kosec, ibid.167(1994)272
  32. J. Zhang,L. Gao.J.Solid State Chem.177 (2004) 1425-1430
  33. J. Zhu, Z. Lu, S.T. Aruna, D. Aurbach, A. Gedanken, Chem.Mater. 12, 2557 (2000)

Downloads

Published

2017-12-31

Issue

Section

Research Articles

How to Cite

[1]
K. Sujatha, T. Seethalakshmi, " Preparation and Characterisation of Pure and Zn-doped SnO2 Nanoparticles, International Journal of Scientific Research in Science and Technology(IJSRST), Online ISSN : 2395-602X, Print ISSN : 2395-6011, Volume 3, Issue 8, pp.639-642, November-December-2017.