Synthesis of 2,4,5-trisubstituted imidazole and 4,5- disubstituted indolylimidazole derivatives by using Amberlyst A-15 as green, recyclable catalyst

Authors

  • Narendra Nirwan  Heterocyclic Research Lab, Department of Chemistry, S.D. Govt. College, Beawar, India
  • Dr. C. Pareek  Heterocyclic Research Lab, Department of Chemistry, S.D. Govt. College, Beawar, India

Keywords:

Reusable Catalyst, Multi-Component Condensation, Indolylimidazole, Benzil.

Abstract

Amberlyst A-15 used as a recyclable, an efficient, green and eco-friendly catalyst for one-pot synthesis of highly substituted imidazole derivatives by multi component condensation of benzil, aldehydes and ammonium acetate under microwave irradiation. The key advantages of this process was cost effectiveness of catalyst, reusability of catalyst, easy work-up and purification of products, excellent yields and very short time reactions.

References

  1. Gupta P. and Gupta J.K. Synthesis of Bioactive Imidazoles: A Review, Chem. Sci. j. 2015, 6(2), 9.
  2. Boiani, M.; Gonz?lez M. Imidazole and benzimidazole derivatives as chemotherapeutic agents. Mini-Reviews Med. Chem., 2005, 5, 409-424.
  3. Gramann, S.; Sadek, B.; Ligneau, X.; Elz, S.; Ganellin, C.R.; Arrang, J.M.; Schwartz, J.C.; Stark H.; Schunack, W. Progress in the proxifan class: Heterocyclic congeners as novel potent and selective histamine H3-receptor antagonists. Eur. J. Pharm. Sci., 2002, 15, 367-378.
  4. Nguyen D.N.; Stump C.A.; Walsh E.S.;? Fernandes, C.; Davide J.P.; Ellis-Hutchings M.; Robinson R.G.; Williams T.M.; Lobell R.B.; Huber H.E.; Buser C.A. Potent inhibitors of farnesyltransferase, Bioorg. Med. Chem. Lett., 2002, 12, 1269-1273.
  5. Chen J.; Wang Z.; Lu Y.; Dalton J.T.; Millera D.D.; Li W. Synthesis and antiproliferative activity of imidazole and imidazoline analogues for melanoma. Bioorg. Med. Chem. Lett., 2008, 18, 3183-3187.
  6. Das P.; Himaja M. Design and synthesis of 4-[2-(5- Nitro)]imidazolylbenzoyl(N methyl) aminoacids and peptides. Int. J. Drug Develop. Res., 2010, 2(2), 364-370.
  7. Liebi R.; Randte R.; Mildenberger H.; Bauer K. and Bieringer H. Chem. Abst. 1987, 108, 6018.
  8. Wolkenberg S. E.; Wisnosk D. D.; Liester W. B.; Wang Y.; Zhao Z. and Lindsley C. W. Org. Lett. 2004,6, 1453.
  9. Pozherskii A. F.; Soldalenkov A. T.; Katritzky A. R. Heterocycles in Life, Society; (New York: Wiley). 1997, 179.
  10. Lombardino J. G.; Wiseman E. H. J. Med. Chem. 1974, 17, 1182.
  11. Philips A. P.; White H. L.; Rosen S. Eur. Pat. Appl. 1983,58, 890.
  12. (a) Bartlett M.; Shaw M.;? Smith J. W. J. Med. Chem. Chim. Ther. 1992, 36, 779. (b) Ghudamassi M.; Barasent J.; Imbach J.; Gayral P. Eup. J. Med. Chem. 198823 225; (c) Hazelton J.; Iddon B.; Redhouse? A. D.; Susehitzky H. Tetrahedron. 1995, 51, 5597.? (d) Lee J. C.;Llaydon J. T.; McDowell P. C.; Gallagher T. T.; KumarS.; Green D.; Mckulty D.; Blumenthal M.; Heys J. R.;Landvaller S. W.; Strikler J. H.;et al. Nature .1994, 372-739. (e) Lindberg P.;Nordberg P.; Alminger T.; Brandstorm A.; WallmarkB.? J. Med. Chem. 1986, 29, 132. (f) Koike H.; KonseT.; Sada T.; Ikeda T.; Hyogo A.; Hinman D.; Saito H.; Yanigasawa H.? Ann. Rep. Sankyo Res. Lab. 2003, 55, 1. (f)Leister C.; Wang Y.; Zhao Z.; and Lindsley C.W. Org. Lett. 2004, 6, 1453; (g) Mannhold R. Drugs Future. 1985, 10, 570.
  13. Kawasaki I.; Katsuma H.; Nakayama Y.; Yamashita M.; Ohta S. Heterocycl. Commun. 1996, 2, 189-191; Chem. Abstr. 1996, 125, 196085.
  14. Burres, N. S.; Barber, D. A.; Gunasekera, S. P.; Shen, L. L.; Clement, J. J. Biochem. Pharm. 1991, 42, 745-751; Chem. Abstr. 1991, 115, 126578.
  15. Tsujii, S.; Rinehart, K. L.; Gunasekera, S. P.; Kashman, Y.; Cross, S. S.; Lui, M. S.; Pomponi, S. A.; Diaz, M. C.J. Org. Chem. 1988, 53, 5446-5453.
  16. Bewely C.A.; Faulkner D.J.; Angew. Chem. Int. Ed. Engl. 1998, 37, 2162-2178.
  17. Robert; Capon C.; Peng C.; Dooms. Org. Biomol. Chem. 2008, 6, 2765-2771.
  18. Shinichi S.; Hao H. S. J. Org. Chem. 1991, 56, 4304-4307.
  19. Hlasta D. J. US 5017584, 1991; Chem. Abstr. 1991, 115, 232249.
  20. Karabelas K.; Lepisto M.; Sjo P. WO 2000078750. 2000. Chem. Abstr. 2000, 134, 71594.
  21. Karabelas K.; Lepisto M.; Sjo, P. WO 9932483. 1999. Chem. Abstr. 1999, 131, 58823.
  22. Levy L. Proceedings Soc. Exp. Biol. Med. 1977, 153, 34-36. Chem. Abstr. 1977, 86, 25978.
  23. Ho D. R.; DE. 1962822, 1970. Chem. Abstr. 1970, 73, 87931.
  24. Benkli K.; Demirayak S.; Karaburun N.G.; Nuri K.; Iscan G.; Ucucu U. Synthesis and antimicrobial activities of some imidazole substituted indoles. Indian J. of Chemisty.? 2004, vol. 43B, 174-179.
  25. Radziszewski B.; Ueber die Constitution des Lophins und verwandter Verbindungen. Chemische Berichte. 1882, Vol. 15, 1493-1496. doi:10.1002/cber.18820150207.
  26. Japp F.; and Robinson H. Beziehungen der Molekularvolumina zur Atomverkettung. Chemische Berichte. 1882, Vol. 15, 1268-1270. doi:10.1002/cber.188201501272.
  27. Kidwai M.; Mothsra P.; Bansal V.; Somvanshi R.K.; Ethayathulla A.S.; Dey S.; Singh T.P. One-pot synthesis of highly substituted imidazoles using molecular iodine: A versatile catalyst. J. Mol. Catal. A Chem. 2007, 265, 177-182.
  28. Sharma G.V.; Jyothi Y.; Lakshmi P.S. Efficient room?temperature synthesis of tri? andtetrasubstituted imidazoles catalyzed by ZrCl4. Synth. Commun. 2006, 36, 2991-3000.
  29. Siddiqui S.A.; Narkhede U.C.; Palimkar S.S.; Daniel T.; Lahoti R.J.; Srinivasan K.V. Room temperature ionic liquid promoted improved and rapid synthesis of 2,4,5-triaryl? imidazoles from aryl aldehydes and 1,2-diketones or ?-hydroxyketone. Tetrahedron 2005, 61, 3539-3546.
  30. (a) Shitole N.V.; Shelke K.F.; Sonar S.S.; Sadaphal S.A.; Shingate B.B.; Shingare M.S. L-Proline as an efficient catalyst for the synthesis of 2,4,5-triaryl-1H-imidazoles. Bull. Korean Chem. Soc. 2009, 30, 1963-1966. (b) Sami S.; Nandi G.Ch.; Singh P.; Singh M.S. L-Proline: An efficient catalyst for the one-pot synthesis of 2,4,5-trisubstituted and 1,2,4,5- tetrasubstituted imidazoles. Tetrahedron. 2009, 65, 10155-10161.
  31. (a) Balalaei S.; Arabanian A. One-pot synthesis of tetrasubstituted imidazoles catalyzed by zeolite HY and silica gel under microwave irradiation. Green Chem. 2000, 2, 274-276. (b) Oskooei H.A.; Alimohammadi Z.; Heravi M.M. Microwave-assisted solid-phase synthesis of 2,4,5-triaryl imidazoles in solvent less system: An improved protocol. Heteroatom Chem. 2006, 17, 699-702.
  32. Shen M.; Cai C.; Yi W. Ytterbium perfluorooctanesulfonate as an efficient and recoverable catalyst for the synthesis of trisubstituted imidazoles. J. Fluorine Chem. 2008, 129, 541-544.
  33. Sharma S.D.; Hazarika P.; Konwar D. An efficient and one-pot synthesis of 2,4,5- trisubstituted and 1,2,4,5-tetrasubstituted imidazoles catalyzed by InCl3?3H2O. Tetrahedron Lett. 2008, 49, 2216-2210.
  34. Heravi M.M.; Bakhtiari K.; Oskooie H.A.; Taheri S. Synthesis of 2,4,5-triaryl-imidazoles catalyzed by NiCl2?6H2O under heterogeneous system. J. Mol. Catal. A Chem. 2007, 263, 279-281.
  35. Murthy S.N.; Madhav B.; Nageswar Y.V.D. DABCO as a mild and efficient catalytic system for the synthesis of highly substituted imidazoles via multi-component condensation strategy. Tetrahedron Lett. 2010, 51, 5252-5257.
  36. Safari J.; Zarnegar Z. Magnetic Fe3O4 nanoparticles as a highly efficient catalyst for synthesis of imidazoles under ultrasound irradiation. Iranian J. Cat. 2012, 2, 121-128.
  37. Safari J.; Gandomi-Ravandi S.; Akbari? Z. Improving methodology for the preparation of highly substituted imidazoles using nano-MgAl2O4 as catalyst under microwave irradiation. Iranian J. Cat. 2013, 3, 33-39.
  38. Girish Y.R.; Sharath Kumar K.S.; Thimmaiah K.N.; Rangappa K.S.; Shashikanth Sh. ZrO2-?-cyclodextrin catalysed synthesis of 2,4,5-trisubstituted imidazoles and 1,2- disubstituted benzimidazoles under solvent free conditions and evaluation of their antibacterial study. RSC Adv. 2015, 5, 75533-75546.
  39. Zang H.; Su Q.; Mo Y.; Cheng B.W.; Jun S. Ionic liquid [EMIM]OAc under ultrasonic irradiation towards the first synthesis of trisubstituted imidazoles. Ultrasonic Sonochem. 2010, 17, 749-751.
  40. Karimi-Jaberi Z.; Barekat M. One-pot synthesis of tri- and tetra-substituted imidazoles using sodium dihydrogen phosphate under solvent-free conditions. Chin. Chem. Lett. 2010, 21, 1183-1186.
  41. Shaterian H. R.; Ranjbar M. An environmental friendly approach for the synthesis of highly substituted imidazoles using Br?nsted acidic ionic liquid, N-methyl-2-pyrrolidonium hydrogen sulfate, as reusable catalyst. J. Mol. Liquid. 2011, 160, 40-49.
  42. Yu Ch.; Lei M.; Su W.; Xie Y. Europium triflate?catalyzed one?pot synthesis of 2,4,5?trisubstituted?1H?imidazoles via a three?component condensation. Synth. Commun. 2007, 37, 3301-3308.
  43. Teimouri A.; Najafi Chermahini A. An efficient and one-pot synthesis of 2,4,5- trisubstituted and 1,2,4,5-tetrasubstituted imidazoles catalyzed via solid acid nano-catalyst. J. Mol. Catal. A Chem. 2011, 346, 39-45.
  44. Chary M.V.; Keerthysri N.C.; Vupallapati S.V.N.; Lingaiah N.; Kantevari S. Tetrabutylammonium bromide (TBAB) in isopropanol: An efficient, novel, neutral and recyclable catalytic system for the synthesis of 2,4,5-trisubstituted imidazoles. Catal. Commun. 2008, 9, 2013-2017.
  45. Gharib, A.; Hashemipour Khorasani, B.R.; Jahangir, M.; Roshani, M.; Bakhtiari, L.; Mohadeszadeh, S. Synthesis of 2,4,5-trisubstituted and 1,2,4,5-tetrasubstituted-1Himidazole derivatives and or 2,4,5-Triaryloxazoles using of silica-supported preyssler nanoparticles. Bul. Chem. Commun. 2014, 46, 165-174.
  46. Hajjami M.; Ghorbani-Choghamarani A.; Yousofvand Z.; Norouzi M. Green synthesis of tri/tetrasubstituted 1H-imidazoles and 2,3-dihydroquinazolin-4(1H)-ones using nano aluminium nitride as solid source of ammonia. J. Chem. Sci. 2015, 127, 1221-1228.
  47. Bakavoli M.; Eshghi H.; Mohammadi A.; Moradi H.; Ebrahimi J. Synthesis of 2,4,5- triaryl-1H-imidazoles using a potent, green and reusable nano catalyst (FHS/SiO2). Iranian J. Cat. 2015, 5, 237-243.
  48. Chavan L.D.; Shankarwar S.G. KSF supported 10-molybdo-2-vanadophosphoric acid as an efficient and reusable catalyst for one-pot synthesis of 2,4,5-trisubstituted imidazole derivatives under solvent-free condition. Chin. J. Cat. 2015, 36, 1054-1059.
  49. Alikarami M.; Amozad M. One-pot synthesis of 2,4,5-trisubstitud imidazole derivatives catalysed by BTPPC under solvent free conditions. Bull. Chem. Soc. Ethiop. 2017, 31(1), 177-184. DOI: http://dx.doi.org/10.4314/bcse.v31i1.16.
  50. ?(a) Whiten D. M. and Sonnenberg B. J. Org. Chem. 1964,29,1926. (b) Schubert H. and Stodalka H. J. Pract. Chem. 1963,22, 130. (c) Venkat Narsaiah A.; Reddy A. R.;Reddy B. V. S.; and Yadav J. S. The Open Catalysis Journal. 2011,4, 43. (d) Pavan Kumar C. N. S. S.; Shrinivas C.;Sadhu P. S.; Rao V. J. and Palaniappan S. J. Heterocyclic Chem. 2009,46(5), 997. (e) Liu Y. H.; Liu Q. S. and ZhangZ. H. J. Molecular Catalysis A: Chemical 2008, 42, 296. (f) Tajbakhsh M.; Heydari Akbar.; Khalilzadeh M. A.;Lakouraj M. M.; Zamenian B. and Khaksar S. Synlett. 2007,15, 2347. (g) Tajbakhsh M.; Hosseinzadeh R. and LasemiZ. Synlett. 2004,4, 635.
  51. Pandit S.; Bhalerao S.K.; Adhav G.L.; Pandit V.U.; Amberlyst A-15: Reusable catalyst for the synthesis of 2,4,5-trisubstituted and 1,2,4,5-tetrasubstituted-1H-imidazoles under MW irradiation. J. Chem. Sci. 2011, Vol. 123, No. 4, 421?426.
  52. Nirwan N.; Pareek C. Mosalpuri S.R.; Microwave-Induced One-Pot Synthesis of 2,4,5-Trisubstituted-1H-Imidazoles by Using Reusable Catalyst Amberlyst A-15. Applied Science for Advancement of Research and Industrialization, Pro. Of Conf. 2015, Vol. II, 129-132.
  53. Pareek C.; Nirwan N.; Synthesis of Bioactive Molecules And Their Biological Screenings. New Biotechnology. 2016, Vol. 33 / S, 81-84.
  54. Nikoofar K.; Dizgarani S. M. HNO3@nano SiO2: An efficient catalytic system.? J. of Saudi Chem. Society. 2015, xxx, xxx?xxx.? http://dx.doi.org/10.1016/j.jscs.2015.11.006.
  55. Mahmoodi N.O.; Nikokar I.; Farhadi M.; Ghavidast A.; One-pot Multi-component Synthesis of Mono- and Bis-indolylimidazole Derivatives Using Zn2+@KSF and Their Antibacterial Activity. Z. Naturforsch. 2014, 69b, 715???720. doi:10.5560/ZNB.2014-4026.
  56. Biradar J.S.; Sasidhar B.; Somappa; Mugali P. S.; One-pot, solvent-free synthesis of 2,5-disubstituted indolylimidazoles by microwave irradiation. Der Pharma Chemica, 2012, 4 (1): 437-441.
  57. Maleki B.; Shirvan H.K.; Taimazi F.; Akbarzadeh E.; Sulfuric Acid Immobilized on Silica Gel as Highly Efficient and Heterogeneous Catalyst for the One-Pot Synthesis of 2,4,5-Triaryl-1H-imidazoles. Int. J. of Org. Chem. 2012, 2, 93-99. http://dx.doi.org/10.4236/ijoc.2012.21015.

Downloads

Published

2017-12-31

Issue

Section

Research Articles

How to Cite

[1]
Narendra Nirwan, Dr. C. Pareek, " Synthesis of 2,4,5-trisubstituted imidazole and 4,5- disubstituted indolylimidazole derivatives by using Amberlyst A-15 as green, recyclable catalyst, International Journal of Scientific Research in Science and Technology(IJSRST), Online ISSN : 2395-602X, Print ISSN : 2395-6011, Volume 3, Issue 8, pp.76-82, November-December-2017.