Applications of Dielectrophoresis in the Field of Medical Sciences

Authors(4) :-Riteshkumar Arya, Hirani Komal, Sankaranarayanan A., Krishnamurthy R.

Dielectrophoresis (DEP) is an accurate, fast and a low-costing diagnostic technique that works on the principle of polarization and motion of bioparticles in applied electric field. This technique has brought great revolution in various fields of science such as polymer research, biosensors, medical diagnostics, microfluidics and environmental research. Research in the field of medical science is the major and wide area of interest that could potentially get benefited from DEP technology for its diverse applications. Moreover, many specialized fields of medical science research are yet to be benefited from the technique offered by DEP. This paper will give an overview of recent progress, current challenges, future aspects and potential applications of DEP technique in the field of medical science. This review will also guide the medical researchers and scientists to explore and make utilization of DEP technique in their respective area of research.

Authors and Affiliations

Riteshkumar Arya
Department of Microbiology, Institute for Medical Sciences and Research Centre, Jaipur National University, Jaipur, Rajasthan, India
Hirani Komal
Department of Microbiology, C. G. Bhakta Institute of Biotechnology, Uka Tarsadia University, Bardoli, , Rajasthan, India
Sankaranarayanan A.
Department of Microbiology, C. G. Bhakta Institute of Biotechnology, Uka Tarsadia University, Bardoli, , Rajasthan, India
Krishnamurthy R.
Department of Microbiology, C. G. Bhakta Institute of Biotechnology, Uka Tarsadia University, Bardoli, , Rajasthan, India

Dielectrophoresis, Bioparticles Manipulation, Medical Science Diagnostics, Human Health.

  1. Aapro,M.; Arends, J.; Bozzetti, F.; Fearon, K.; Grunberg, S.M.; Herrstedt, J.; Hopkinson, J.; Jacquelin-Ravel, N.; Jatoi, A.; Kaasa, S.; et al. Early recognition of malnutrition and cachexia in the cancer patient: A position paper of a European School of Oncology Task Force. Ann. Oncol. 2014, 25, 1492–1499.
  2. Adackapara, C.A.; Sholl, L.M.; Barletta, J.A.; Hornick, J.L. Immunohistochemistry using the BRAF V600E mutation-specific monoclonal antibody VE1 is not a useful surrogate for genotyping in colorectal adenocarcinoma. Histopathology 2013, 63, 187–193.
  3. Adekanmbi, E.O.; Srivastava, S. Dielectrophoretic applications for disease diagnostics using lab-on-a-chip platform. Lab Chip 2017, 16, 2148–2167.
  4.  Alshareef, M.; Metrakos, N.; Perez, E.J.; Azer, F.; Yang, F.; Yang, X.; Wang, G. Separation of tumor cells with dielectrophoresis-based microfluidic chip. Biomicrofluidics 2013, 7, 011803.
  5. Bakewell, D.J.; Bailey, J.; Holmes, D. Real-time dielectrophoretic signaling and image quantification methods for evaluating electrokinetic properties of nanoparticles. Electrophoresis 2015, 36, 1443–1450.
  6. Bastiat, G.; Pritz, C.O.; Roider, C.; Fouchet, F.; Lignières, E.; Jesacher, A.; Glueckert, R.; Ritsch-Marte, M.; Schrott-Fischer, A.; Saulnier, P.; et al. A new tool to ensure the fluorescent dye labeling stability of nanocarriers: A real challenge for fluorescence imaging. J. Control. Release 2013, 170, 334–342.
  7. Blasi, B.; D’Alessandro, A.; Ramundo, N.; Zolla, L. Red blood cell storage and cell morphology. Transfus. Med. 2012, 22, 90–96.
  8. Chaurey, V.; Rohani, A.; Su, Y.H.; Liao, K.T.; Chou, C.F.; Swami, N.S. Scaling down constriction-based (electrodeless) dielectrophoresis devices for trapping nanoscale bioparticles in physiological media of high-conductivity. Electrophoresis 2013, 34, 1097–1104.
  9. Chen, S.C.; Slavin, M.A.; Heath, C.H.; Playford, E.G.; Byth, K.; Marriott, D.; Kidd, S.E.; Bak, N.; Currie, B.; Hajkowicz, K. Clinical manifestations of Cryptococcus gattii infection: Determinants of neurological sequelae and death. Clin. Infect. Dis. 2012.
  10. Chrimes, A.F.; Kayani, A.A.; Khoshmanesh, K.; Stoddart, P.R.; Mulvaney, P.; Mitchell, A.; Kalantar-Zadeh, K. Dielectrophoresis–Raman spectroscopy system for analysing suspended nanoparticles. Lab Chip 2011, 11, 921–928.
  11.  Crawford, A.; Angelosanto, J.M.; Kao, C.; Doering, T.A.; Odorizzi, P.M.; Barnett, B.E.; Wherry, E.J. Molecular and transcriptional basis of CD4+ T cell dysfunction during chronic infection. Immunity 2014, 40, 289–302.
  12. Dell, A.; Galadari, A.; Sastre, F.; Hitchen, P. Similarities and differences in the glycosylation mechanisms in prokaryotes and eukaryotes. Int. J. Microbiol. 2011, 2010, 148178.
  13. Du, E.; Dao, M.; Suresh, S. Quantitative biomechanics of healthy and diseased human red blood cells using dielectrophoresis in a microfluidic system. Extreme Mech. Lett. 2014, 1, 35–41.
  14. Favaloro, E.J.; Funk, D.M.A.; Lippi, G. Pre-analytical variables in coagulation testing associated with diagnostic errors in hemostasis. Lab. Med. 2012, 43, 1–10.
  15. Galanzha, E.I.; Shashkov, E.V.; Spring, P.M.; Suen, J.Y.; Zharov, V.P. In vivo, noninvasive, label-free detection and eradication of circulating metastatic melanoma cells using two-color photoacoustic flow cytometry with a diode laser. Cancer Res. 2009, 69, 7926–7934.
  16. Gan, S.D.; Patel, K.R. Enzyme immunoassay and enzyme-linked immunosorbent assay. J. Investig. Dermatol. 2013, 133, 1–3.
  17. Garnett, M.J.; Edelman, E.J.; Heidorn, S.J.; Greenman, C.D.; Dastur, A.; Lau, K.W.; Greninger, P.; Thompson, I.R.; Luo, X.; Soares, J.; et al. Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature 2012, 483, 570–575.
  18. Gascoyne, P.R.; Shim, S. Isolation of circulating tumor cells by dielectrophoresis. Cancers 2014, 6, 545–579.
  19. Ghallab, Y.; Badawy,W. Sensing methods for dielectrophoresis phenomenon: From bulky instruments to lab-on-a-chip. IEEE Circuits Syst. Mag. 2004, 4, 5–15.
  20. Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674.
  21. Hölzel, R. Single particle characterization and manipulation by opposite field dielectrophoresis. J. Electrost. 2002, 56, 435–447.
  22. Huang, C.; Liu, H.; Bander, N.H.; Kirby, B.J. Enrichment of prostate cancer cells from blood cells with a hybrid dielectrophoresis and immunocapture microfluidic system. Biomed. Microdevices 2013, 15, 941–948.
  23. Hughes, M.P.; Morgan, H.; Rixon, F.J. Measuring the dielectric properties of herpes simplex virus type 1 virions with dielectrophoresis. Biochim. Biophys. Acta Gen. Subj. 2002, 1571, 1–8.
  24. Ismail, A.; Hughes, M.; Mulhall, H.; Oreffo, R.; Labeed, F. Characterization of human skeletal stem and bone cell populations using dielectrophoresis. J. Tissue Eng. Regen. Med. 2015, 9, 162–168.
  25. Jacobs, I.J.; Menon, U. Progress and challenges in screening for early detection of ovarian cancer. Mol. Cell. Proteom.2004, 3, 355–366.
  26. Kale, A.; Patel, S.; Qian, S.; Hu, G.; Xuan, X. Joule heating effects on reservoir-based dielectrophoresis. Electrophoresis 2014, 35, 721–727.
  27. Kamath, R.R.; Madou, M.J. Three-Dimensional Carbon Interdigitated Electrode Arrays for Redox-Amplification. Anal. Chem. 2014, 86, 2963–2971.
  28. Kassiotis, G. Endogenous retroviruses and the development of cancer. J. Immunol. 2014, 192, 1343–1349.
  29. Khoshmanesh, K.; Akagi, J.; Nahavandi, S.; Skommer, J.; Baratchi, S.; Cooper, J.M.; Kalantar-Zadeh, K.; Williams, D.E.; Wlodkowic, D. Dynamic analysis of drug-induced cytotoxicity using chip-based dielectrophoretic cell immobilization technology. Anal. Chem. 2011, 83, 2133–2144.
  30. Khoshmanesh, K.; Baratchi, S.; Tovar-Lopez, F.J.; Nahavandi, S.; Wlodkowic, D.; Mitchell, A.; Kalantar-Zadeh, K. On-chip separation of Lactobacillus bacteria from yeasts using dielectrophoresis. Microfluid. Nanofluid. 2012, 12, 597–606.
  31. LaLonde, A.; Romero-Creel, M.F.; Lapizco-Encinas, B.H. Assessment of cell viability after manipulation with insulator-based dielectrophoresis. Electrophoresis 2015, 36, 1479–1484.
  32. Laux, E.M.; Knigge, X.; Bier, F.F.; Wenger, C.; Hölzel, R. Dielectrophoretic immobilization of proteins: Quantification by atomic force microscopy. Electrophoresis 2015, 36,2094–2101.
  33. Liang, X.; Graham, K.; Johannessen, A.; Costea, D.; Labeed, F. Human oral cancer cells with increasing tumorigenic abilities exhibit higher effective membrane capacitance. Integr. Biol. 2014, 6, 545–554.
  34. Lin, S.-C.; Lu, J.-C.; Sung, Y.-L.; Lin, C.-T.; Tung, Y.-C. A low sample volume particle separation device with electrokinetic pumping based on circular travelling-wave electroosmosis. Lab Chip 2013, 13, 3082–3089.
  35. Mehl, H.L.; Cotty, P.J. Nutrient environments influence competition among Aspergillus flavus genotypes.Appl. Environ. Microbiol. 2013, 79, 1473–1480.
  36. Morgan, H.; Hughes, M.P.; Green, N.G. Separation of submicron bioparticles by dielectrophoresis. Biophys. J. 1999, 77, 516–525.
  37. Morris, A.J.; Byrne, T.C.; Madden, J.F.; Reller, L.B. Duration of incubation of fungal cultures. J. Clin. Microbiol. 1996, 34, 1583–1585.
  38. Novak, S.M.; Marlowe, E.M. Automation in the clinical microbiology laboratory. Clin. Lab. Med. 2013, 33, 567–588.
  39. Nunamaker, J.F., Jr.; Twyman, N.W.; Giboney, J.S. Breaking out of the design science box: High-value impact through multidisciplinary design science programs of research. In Proceedings of the 19th Americas Conference on Information Systems, AMCIS 2013, Chicago, IL, USA, 15–17 August 2013.
  40. Patel, S.; Showers, D.; Vedantam, P.; Tzeng, T.-R.; Qian, S.; Xuan, X. Microfluidic separation of live and dead yeast cells using reservoir-based dielectrophoresis. Biomicrofluidics 2012, 6, 034102.
  41. Patel, V.K.; Seyed-Yagoobi, J. Combined Electrohydrodynamic Conduction Pumping and Dielectrophoresis for Enhancement of Liquid Film Flow Boiling. In Proceedings of the ASME 2015 International Mechanical Engineering Congress and Exposition, Houston, TX, USA, 13–19 November 2015; American Society of Mechanical Engineers: New York, NY, USA, 2015; p. V07AT09A011.
  42. Pesch, G.R.; Kiewidt, L.; Du, F.; Baune, M. Electrodeless dielectrophoresis: Impact of geometry and material on obstacle polarization. Electrophoresis 2016, 37, 291–301.
  43. Pohl, H.A. The Motion and Precipitation of Suspensoids in Divergent Electric Fields. J. Appl. Phys. 1951, 22, 869–871.
  44. Pohl, H.A.; Pohl, H. Dielectrophoresis: The Behavior of Neutral Matter in Nonuniform Electric Fields; Cambridge University Press: Cambridge, UK, 1978; Volume 80.
  45. Poynard, T.; Moussalli, J.; Munteanu, M.; Thabut, D.; Lebray, P.; Rudler, M.; Ngo, Y.; Thibault, V.; Mkada, H.; Charlotte, F. Slow regression of liver fibrosis presumed by repeated biomarkers after virological cure in patients with chronic hepatitis C. J. Hepatol. 2013, 59, 675–683.
  46. Sankaranarayanan A, Prabhu Sankarlal KM, Raja D. Impact of different frequencies in the entrapment of bacterial pathogens from drinking water using dielectrophoretic phenomena. J water chemistry and technology 2016, Volume.38 No.2, 117-122.
  47. Saucedo-Espinosa, M.A.; LaLonde, A.; Gencoglu, A.; Romero-Creel, M.F.; Dolas, J.R.; Lapizco-Encinas, B.H. Dielectrophoretic manipulation of particle mixtures employing asymmetric insulating posts. Electrophoresis 2017, 37, 282–290.
  48. Saucedo-Espinosa, M.A.; Lapizco-Encinas, B.H. Experimental and theoretical study of dielectrophoretic particle trapping in arrays of insulating structures: Effect of particle size and shape. Electrophoresis 2015, 36, 1086–1097.
  49. Tang, S.-Y.; Yi, P.; Soffe, R.; Nahavandi, S.; Shukla, R.; Khoshmanesh, K. Using dielectrophoresis to study the dynamic response of single budding yeast cells to Lyticase. Anal. Bioanal. Chem. 2015, 407, 3437–3448.
  50. Wang, Y.; Du, F.; Baune, M.; Thöming, J. Dielectrophoresis in aqueous suspension: Impact of electrode configuration. Microfluid. Nanofluid. 2014, 17, 499–507.
  51. Wu, S.-Y.; Hsu, W. Wireless EWOD/DEP chips powered and controlled through LC circuits and frequency modulation. Lab Chip 2014, 14, 3101–3109.
  52. Xuan, X.; Zhu, J.; Church, C. Particle focusing in microfluidic devices. Microfluid. Nanofluid. 2010, 9, 1–16.
  53. Yafouz, B.; Kadri, N.A.; Rothan, H.A.; Yusof, R.; Ibrahim, F. Discriminating dengue-infected hepatic cells (WRL-68) using dielectrophoresis. Electrophoresis 2016, 37, 511–518.
  54. Yang, L. A review of multifunctions of dielectrophoresis in biosensors and biochips for bacteria detection. Anal. Lett. 2012, 45, 187–201.
  55. Yun, H.; Kim, K.; Lee, W.G. Cell manipulation in microfluidics. Biofabrication 2013, 5, 022001.

The Rubik's Cube makes a perfect gift for any occasion. Learn how to solve the cube on Ruwix.

Publication Details

Published in : Volume 4 | Issue 11 | November-December 2018
Date of Publication : 2018-12-30
License:  This work is licensed under a Creative Commons Attribution 4.0 International License.
Page(s) : 328-341
Manuscript Number : IJSRST18401161
Publisher : Technoscience Academy

Print ISSN : 2395-6011, Online ISSN : 2395-602X

Cite This Article :

Riteshkumar Arya, Hirani Komal, Sankaranarayanan A., Krishnamurthy R., " Applications of Dielectrophoresis in the Field of Medical Sciences", International Journal of Scientific Research in Science and Technology(IJSRST), Print ISSN : 2395-6011, Online ISSN : 2395-602X, Volume 4, Issue 11, pp.328-341, November-December-2018. Available at doi : https://doi.org/10.32628/IJSRST18401161    
Journal URL : https://ijsrst.com/IJSRST18401161
Citation Detection and Elimination     |      | |how to solve the cube on Ruwix.

" target="_blank"> BibTeX | how to solve the cube on Ruwix.

" target="_blank">RIS | how to solve the cube on Ruwix.

" target="_blank">CSV

Article Preview