Electrochemical and Spectroscopic Studies of Nanocomposites Laden with BaTiO3-grafted-graphene Oxide

Authors(2) :-S. Padmaja, R. Nimma Elizabeth

The electrochemical behavior of lithium-sulfur batteries was investigated by means of electrochemical impedance spectroscopy (EIS). Films of NCPEs (PEO+LiCF3SO3+BaTiO3-g-GO) were cast using a novel hot-press technique. The addition of filler in fractional amount to the solid polymer matrix at room temperature further enhances the ionic conductivity. The membranes were subjected to cycling, FT-IR and Raman spectroscopic analyses. The occurrence of ion-ion pairs interaction has been identified using FT-IR and Raman analysis. Cells with this electrolyte have a high coulombic efficiency of 98% and a high cycling stability.

Authors and Affiliations

S. Padmaja
Department of Physics, Lady Doak College, Madurai, Tamil Nadu, India
R. Nimma Elizabeth
Department of Physics, Lady Doak College, Madurai, Tamil Nadu, India

FT-IR, Raman; ionic Conductivity, Cycling, Coulombic efficiency

  1. Armand, M.; Tarascon, J.-M. Building Better Batteries. Nature 2008, 451, 652−657.
  2. M.Winter, What are Batteries, Fuel Cells and Supercapacitors? Chem. Rev. 104 (2004) 4245-4269.
  3. J.M. Tarascon and M. Armand, Issues and challenges facing rechargeable lithium batteries.Nature 414 (2001) 359-367.
  4. J.M. Tarascon Recent advances on Li-batteries and beyond: Materials aspects Nature Chemistry 7, 19–29 (2015)
  5. V. Subramaniyan, C. Luo, A.M. Stephan, K.S. Nahm, S. Thomas and B. Wei, Supercapacitors from Activated Carbon Derived from Banana Fibers,J.Phys.Chem.C 111 (2007) 7527-7531.
  6. Yoshio, M., Brodd, R. J., and Kozawa, A.Lithium-Ion Batteries. Springer, 1edition, (2009).
  7. Ehrlich, G.M., Lithium-ion batteries. 2002.
  8. P.G. Bruce et al., Li-O-2 and Li-S batteries with high energy storage,Nat. Mater. 11 (2012) 19–29.
  9.  H.-J. Peng et al., Review on High-Loading and High-Energy Lithium-Sulfur Batteries Adv. Energy Mater. 7 (2017) 1700260
  10.  Z.W. Seh et al., Designing high-energy lithium–sulfur batteries Chem. Soc. Rev. 45 (2016) 5605–5634.
  11. M.Wild et al., Lithium sulfur batteries, a mechanistic review Energy Environ. Sci. 8 (2015) 3477–3494.
  12.  L. Li et al., Self-heating–induced healing of lithium dendrites, Science 359 (2018) 1513–1516
  13. A. Manthiram et al., Challenges and prospects of lithium–sulfur batteries,Acc. Chem. Res. 46 (2013) 1125–1134.
  14. A. Manthiram et al., Lithium-sulfur batteries: progress and prospects Adv. Mater. 27 (2015) 1980–2006
  15. R.Fang et al., A high-energy sulfur cathode in carbonate electrolyte by eliminating polysulfides via solid-phase lithium-sulfur transformation Adv. Mater. 29 (2017) 1606823.
  16. A.Manthiram et al., Rechargeable Lithium–Sulfur Batteries Chem. Rev. 114 (2014) 11751–11787
  17. H.J. Peng et al., A review of solid electrolytes for safe lithium-sulfur batteries Chem. Soc. Rev. 46 (2017) 5237–5288
  18. T.Wang et al., Fabrication Methods of Porous Carbon Materials and Separator Membranes for Lithium–Sulfur Batteries: Development and Future Perspectives Small Methods 1 (2017) 1700089.
  19. Y.X. Yin et al., Lithium-sulfur batteries: electrochemistry, materials, and prospects.Angew. Chem. Int. Ed. 52 (2013) 13186–13200.
  20. Ji, X.L.; Lee, K.T.; Nazar, L.F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater. 2009, 8, 500-506.
  21. Wang, J.L.; Yang, J.; Xie, J.Y.; Xu, N.X.; Li, Y. Sulfur-carbon nano-composite as cathode for rechargeable lithium battery based on gel electrolyte Electrochem. Commun. 2002, 4, 499-502.
  22. Han, S.C.; Song, M.S.; Lee, H.; Kim, H.S.; Ahn, H.J.; Lee, J.Y. Effect of multiwalled carbon nanotubes on electrochemical properties of lithium/sulfur rechargeable batteries.J. Electrochem. Soc. 2003, 150, A889-A893.
  23. Zheng, W.; Liu, Y.W.; Hu, X.G.; Zhang, C.F. Novel Nanosized Adsorbing Sulfur Composite Cathode Materials for the Advanced Secondary Lithium Batteries. Electrochim. Acta 2006, 51, 1330-1335. 64
  24.  Yuan, L.X.; Yuan, H.P.; Qiu, X.P.; Chen, L.Q.; Zhu, W.T. Improvement of cycle property of sulfur-coated multi-walled carbon nanotubes composite cathode for lithium/sulfur batteries. J. Power Sources 2009, 189, 1141-1146.
  25. Chen, S.R.; Zhai, Y.P.; Xu, G.L.; Jiang, Y.X.; Zhao, D.Y.; Li, J.T.; Huang, L.; Sun, S.G. Ordered mesoporous carbon/sulfur nanocomposite of high performances as cathode for lithium-sulfur battery. Electrochem. Acta 2011, 56, 9549-9555.
  26. Wang, J.; Chew, S.Y.; Zhao, Z.W.; Ashraf, S.; Wexler, D.; Chen, J.; Ng, S.H.; Chou, S.L.; Liu, H.K. Sulfur-mesoporous carbon composites in conjunction with a novel ionic liquid electrolyte for lithium rechargeable batteriesCarbon 2008, 46, 229-235.
  27. Zhang, B.; Qin, X.; Li, G.R.; Gao, X.P. Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres. Energy Environ. Sci. 2010, 3, 1531-1537.
  28. Zhang, B.; Lai, C.; Zhou, Z.; Gao, X.P. Preparation and electrochemical properties of sulfur-acetylene black composites as cathode materials.Electrochim. Acta 2009, 54, 3708- 3713.
  29.  Wang, H.L.; Yang, Y.; Liang, Y.Y.; Robinson, J.T.; Li, Y.G.; Jackson, A.; Cui, Y.; Dai, H.J. Nano Lett. 2011, 11, 2644-2647.
  30. Wang, J.L.; Yang, J.; Wan, C.R.; Du, K.; Xie, J.Y.; Xu, N.X.. Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability Adv. Funct. Mater. 2003, 13, 487-492. 65
  31.  Wang, J.; Chen, J.; Konstantinov, K.; Zhao, L.; Ng, S.H.; Wang, G.X.; Guo, Z.P.; Liu, H.K. Sulfur composite cathode materials for rechargeable Lithium batteriesElectrochim. Acta 2006, 51, 4634-4638.
  32.  Sun, M.M.; Zhang, S.C.; Jiang, T.; Zhang, L.; Yu, J.H. Nano-wire networks of sulfurpolypyrrole composite cathode materials for rechargeable lithium batteries. Electrochem. Commun. 2008, 10, 1819-1822.
  33. Liang, X.; Liu, Y.; Wen, Z.Y.; Huang, L.Z.; Wang, X.Y.; Zhang, H. A nano-structured and highly ordered polypyrrole-sulfur cathode for lithium-sulfur batteries. J. Power Sources 2011, 196, 6951-6955.
  34. Zhang, Y.G.; Bakenov, Z.; Zhao, Y.; Konarov, A.; Doan, T.N.L.; Malik, M.; Paron, T.; Chen, P. One-step synthesis of branched sulfur/polypyrrole nanocomposite cathode for lithium rechargeable batteries J. Power Sources 2012, 208, 1-8.
  35. Shim, J.; Striebel, K.A.; Cairns, E.J. The lithium/sulfur rechargeable cell J. Electrochem. Soc. 2002, 149, A1321-A1325.
  36. Cheon, S.E.; Ko, K.S.; Cho, J.H.; Kim, S.W.; Chin, E.Y.; Kim, H.T. Rechargeable lithium sulfur battery J. Electrochem. Soc. 2003, 150, A796-A799
  37. Liang, X.; Wen, Z.; Liu, Y.; Zhang, H.; Huang, L.; Jin, J. Highly dispersed sulfur in ordered mesoporous carbon sphere as a composite cathode for rechargeable polymer Li/S battery. J. Power Sources 2011, 196, 3655-3658.
  38. Mikhaylik, Y.V.; Akridge, J.R. Polysulfide shuttle study in the Li/S battery system J. Electrochem. Soc. 2004, 151, A1969-A1976.
  39. Liang, X.; Wen, Z.; Liu, Y.; Wu, M.; Jin, J.; Zhang, H.; Wu, X. Improved cycling performances of lithium sulfur batteries with LiNO3 − modified electrolyte. J. Power Sources 2011, 196, 9839-9843. 66
  40. Choi, J.W.; Kim, J.K.; Cheruvally, G.; Ahn, J.H.; Ahn, H.J.; Kim, K.W. Rechargeable lithium/sulfur battery with suitable mixed liquid electrolytes.Electrochimica. Acta 2007, 52, 2075-2082.
  41.  Chang, D.R.; Lee, S.H.; Kim, S.W.; Kim, H.T. Binary electrolyte based on tetra(ethylene glycol) dimethyl ether and 1,3-dioxolane for lithium-sulfur batteryJ. Power Sources 2002, 112, 452-460.
  42.  Kim, S.; Jung, Y.; Park, S.J. Effects of imidazolium salts on discharge performance of rechargeable lithium-sulfur cells containing organic solvent electrolytes. J. Power Sources 2005, 152, 272-277
  43. . Choi, J.W.; Cheruvally, G.; Kim, D.S.; Ahn, J.H.; Kim, K.W.; Ahn, H.J. Rechargeable lithium/sulfur battery with liquid electrolytes containing toluene as additiveJ. Power Sources 2008, 183, 441-445.
  44. Stephan, A.M. Review on gel polymer electrolytes for lithium batteries. Eur. Polym. J. 2006, 42, 21-42.
  45. Song, J.Y.; Wang, Y.Y.; Wan, C.C. Review of gel-type polymer electrolytes for lithiumion batteries.J. Power Sources 1999, 77, 183-197
  46. Shin, J.H.; Alessandrini, F.; Passerini, S. (2005), Electrochemical and mechanical properties of nanochitin-incorporated PVDF-HFP-based polymer electrolytes for lithium batteries; J Elecrochem. Soc,152,A283-A288.
  47. Manuel Stephen, A.; Prem kumar, T.; Nathan, A.K.; Angulakshmi, N. (2009),Chitin-Incorporated Poly(ethylene oxide)-Based Nanocomposite Electrolytes for Lithium Batteries. J Phys Chem B,113,1963-1971.
  48. Appetecchi G.B.;Hassoun, J.; Scrosati, S.; Croce F.;Cassel, F.; Salomon,M.; 2003, Hot-pressed, solvent-free, nanocomposite, PEO-based electrolyte membranes: II. All solid-state Li/LiFePO4 polymer batteries,Power Sources J29. ,124,246-253.
  49. Croce, F.; Perci, L.; Scrosati, B.; Fiory, F. S.;Plichta, E.; Hendrickson, M. A,(2001),Composites polymer electrolytes for electrochemical devices,Electrochim Acta 2001,46,2457-2461.
  50. Angulakshmi, N.;Nathan, M.A.K.;Kumar R.S.; Manuel Stephen, A.(2014) Composite Polymer Electrolytes Encompassing Metal Organic Frame Works: A New Strategy for All-Solid-State Lithium Batteries,J Phys.Chem 2014 C118, 240-247.
  51. A M. B. Armand, M. J. Duclot, and Ph. Rigaud, Ab-stract Cl16, 3rd International Meeting on Solid Electrolytes--Solid State Ionics and Galvanic Celts, Tokyo, Japan, Sept. 15-19, 1980.
  52. 6. D. B. James, R. S. Stein, and W. J. Macknight, Bull.Am. Phys. Soc., 24, 479 (1979).
  53. Sangiliyandi Gurunathan, Jae Woong ,Han Ahmed,Abdal Dayem Vasuki Eppakayala Jin-Hoi Kim Oxidative stress-mediated antibacterial activity of graphene oxide and reduced graphene oxide in Pseudomonas aeruginosa, International Journal of Nanomedicine 2012:7 5901–5914
  54. Kudin KN, Ozbas B, Schniepp HC, Prud’homme RK, Aksay IA, Car R. Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett. 2008;8:36–41.

Publication Details

Published in : Volume 4 | Issue 11 | November-December 2018
Date of Publication : 2018-12-30
License:  This work is licensed under a Creative Commons Attribution 4.0 International License.
Page(s) : 319-327
Manuscript Number : IJSRST18401163
Publisher : Technoscience Academy

Print ISSN : 2395-6011, Online ISSN : 2395-602X

Cite This Article :

S. Padmaja, R. Nimma Elizabeth, " Electrochemical and Spectroscopic Studies of Nanocomposites Laden with BaTiO3-grafted-graphene Oxide ", International Journal of Scientific Research in Science and Technology(IJSRST), Print ISSN : 2395-6011, Online ISSN : 2395-602X, Volume 4, Issue 11, pp.319-327, November-December-2018. Available at doi : https://doi.org/10.32628/IJSRST18401163
Journal URL : http://ijsrst.com/IJSRST18401163

Article Preview