Hydrothermal Assisted Synthesis of FeWO4 for Degradation of 2-Nitrophenol under Visible Light Illumination

Authors

  • M. Jagadeesh Babu  Department of Physical, Nuclear and Chemical Oceanography, Andhra University, Visakhapatnam, India
  • B. Sathish Mohan  Department of Inorganic & Analytical Chemistry, Andhra University, Visakhapatnam, India
  • R. Balaji Anjaneyulu  
  • Ch. C. Sailaja Lakshmi  
  • R. Muralikrishna  

Keywords:

FeWO4, hydrothermal, 2-Nitrophenol and visible light irradiation

Abstract

In this paper, the iron tungstate (FeWO4) particles were synthesized by a simple, facile and green hydrothermal approach using sodium tungstate and iron nitrate. The synthesized material have been characterized by field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), fourier transform infrared (FTIR) and UV-Visible diffuse reflectance spectrophotometer (UV-Vis DRS). These results reveal that the hydrothermally synthesized FeWO4 material is a promising photocatalyst for the degradation of 2-Nitrophenol (2-NP) under visible light illumination.

References

  1. G. Booth, (2007), Ullmann's Encyclopedia of Industrial Chemistry (Wiley-VCH, Weinheim, Germany.
  2. J. Tremp, P. Mattrel, S. Fingler, and W. Giger.(1993), Phenols and nitrophenols as tropospheric pollutants: emissions from automobile exhausts and phase transfer in the atmosphere.Water, Air, Soil Pollut, 68, 113.
  3. Ammar S., Oturan N., Oturan M.A. (2007), Electrochemical oxidation of 2-nitrophenol in aqueous medium by electro-fenton technology, J. Environ. Eng. Manage., 17, 89-96.
  4. Ribeiro R.S., Silva A.M.T., Figueiredo J.L., Faria J.L. (2013), App. Catal. B: Environ. 140-141, 356-362.
  5. Ischei T.O., Okieimen F.E. (2014), Adsorption of 2-nitrophenol onto water hyacinth activated carbon-kinetics and equilibrium studies, Environ Pollution, 3, 99-111.
  6. Zhu Z, Tao L, Li F (2014 Aug 30), 2-Nitrophenol reduction promoted by S. putrefaciens 200 and biogenic ferrous iron: the role of different size-fractions of dissolved organic matter, JOURNAL:"J Hazard Mater", 279,436-43.
  7. Wu, J., Rudya, K., and Sparka, J. (2000), Adv. Environ. Res., 4, 339-346.
  8. Hong, P.K.A. and Zeng, Y., ( 2002), Water Res., 36, 4243-4254.
  9. Gharbani, P., Tabatabaii, S.M., and Mehrizad, A., (2008)., Int. J. Environ. Sci. Tech., Removal of Congo red from textile wastewater by ozonation, 5, 495-500.
  10. Y.-X. Zhou, H.-B. Yao, Q. Zhang, J.-Y. Gong, S.-J. Liu, S.-H. Yu, (2009), Hierarchical FeWO4 microcrystals: solvothermal synthesis and their photocatalytic and magnetic properties.Inorg. Chem., 48, 1082.
  11. S.H. Yu, B. Liu, M.S. Mo, J.H. Huang, X.M. Liu, Y.T. Qian, (2003), Adv. Funct. Mater. 13 639.
  12. A. Phuruangrat, T. Thongtem, S. Thongtem, (2010), Curr. Appl. Phys., 10, 342.
  13. A. Kuzmin, J. Purans, R. Kalendarev, D. Pailharey, Y. Mathey, (2001), Electrochim. Acta, 46, 2233.
  14. J.H. Ryu, S.Y. Bang, W.S. Kim, G.S. Park, K.M. Kim, J. Yoon, K.B. Shim, N. Koshizaki, (2007) , J. Alloys Compd., 441, 146.
  15. A. Kalinko, A. Kuzmin, R.A. Evarestov, (2009), Ab initio study of the electronic and atomic structure of the wolframite-type ZnWO4, Solid State Commun., 149, 425.
  16. L. Chen, Y. Gao., (2009), Electro-deposition of luminescent molybdate and tungstate thin films via a cell route, Mater.Chem.Phys.,116, 242.
  17. I.S. Cho, C.H. Kwak, D.W. Kim, S. Lee, K.S. Hong., (2009), Photophysical, Photoelectro- chemical, and Photocatalytic Properties of Novel SnWO4 Oxide Semiconductors with Narrow Band Gaps, J. Phys. Chem. C, 113, 10647.
  18. M. Itoh, N. Fujita, Y. Inabe, (2006), X-Ray Photoelectron Spectroscopy and Electronic Structures of Scheelite- and Wolframite-Type Tungstate Crystals, J. Phys. Soc. Jpn., 75, 084705.
  19. Z. Yi, T. Liu, Q. Zhang, Y. Sun, (2006), First-principles study on the origin of optical transitions to be associated with F colour centers for PbWO4 crystals, J. Electron Spectrosc. Relat. Phenom.,151,140-143.
  20. Y. Abraham, N.A.W. Holzwarth, R.T. Williams, (2000), Electronic structure and opticalproperties of CdMoO4 and CdWO4, Phys. Rev. B, 62,1733.
  21. O.Y. Khyzhun, V.L. Bekenev, Y.M. Solonin, (2009), First-principles calculations and X-ray spectroscopy studies of the electronic structure of CuWO4., J. Alloys Compd., 480, 184.
  22. Zhang, J.; Wang, Y.; Li, S. K.; Wang, X. F.; Huang, F. Z.; Xie, A. J.; Shen, Y. H., (2011), Controlled Synthesis, Growth Mechanism and Optical Properties of FeWO4 Hierarchical Microstructures, Cryst Eng Comm,13, 5744−5750.
  23. J. Zhang, Y. Wang, S. Li, X. Wang, F. Huang, A. Xie, Y. Shen., (2011), Cryst. Eng. Comm, 13, 5744.
  24. K. Buvaneswari, R. Karthiga, B. Kavitha, M. Rajarajan, A. Suganthi, (2015), Effect of FeWO4 doping on the photocatalytic activity of ZnO under visible light irradiation, Appl. Surf. Sci., 356, 333.
  25. R. Shao, L. Sun, L. Tang, Z. Chen., (2013), Chem. Eng. J.,185.

Downloads

Published

2018-02-28

Issue

Section

Research Articles

How to Cite

[1]
M. Jagadeesh Babu, B. Sathish Mohan, R. Balaji Anjaneyulu, Ch. C. Sailaja Lakshmi, R. Muralikrishna, " Hydrothermal Assisted Synthesis of FeWO4 for Degradation of 2-Nitrophenol under Visible Light Illumination, International Journal of Scientific Research in Science and Technology(IJSRST), Online ISSN : 2395-602X, Print ISSN : 2395-6011, Volume 4, Issue 2, pp.417-422, January-February-2018.