Amperometric Determination of Ascorbic Acid and Riboflavin Using Ferrocene/Thionin Bimediator Modified Electrode

Authors

  • M. Devendiran  Department of Analytical Chemistry, University of Madras, Guindy Campus, Chennai, Tamil Nadu, India
  • K. Krishna Kumar  Department of Analytical Chemistry, University of Madras, Guindy Campus, Chennai, Tamil Nadu, India
  • S. Sriman Narayanan  Department of Analytical Chemistry, University of Madras, Guindy Campus, Chennai, Tamil Nadu, India

Keywords:

Amperometry, Bimediator, Ascorbic acid, Riboflavin

Abstract

A bimedaitor modified electrode composed of ferrocene monocarboxylic acid covalently linked to thionin was developed for the amperometric determination of ascorbic acid and riboflavin. The bimeditor molecule was characterized with FTIR spectroscopy and the electrochemical behaviour of the bimediator modified electrode was studied using cyclic voltammetry. Ferrocene present in the bimediator favoured the electrocatalytic oxidation of ascorbic acid and thionin favoured the electrocatalytic reduction of the riboflavin both in static and dynamic conditions. From the amperometric studies, a linear range for the oxidation of ascorbic acid from 23 ?M to 138 ?M with a correlation coefficient of 0.9875 and for the reduction of riboflavin from 9.90 ?M to 94.20 ?M with a linear regression coefficient of 0.9864 was observed with the bimediator modified electrode.

References

  1. C.S. Erdurak-Kilic, B. Uslu, B. Dogan, U. Ozgen, S.A. Ozkan, M. Coskun, Anodic voltammetric behavior of ascorbic acid and its selective determination in pharmaceutical dosage forms and some Rosa species of Turkey, J. Anal. Chem. 61 (2006) 1113-1120. doi:Doi 10.1134/S106193480611013x.
  2. M.H. Pournaghi-Azar, R. Ojani, Catalytic oxidation of ascorbic acid by some ferrocene derivative mediators at the glassy carbon electrode. Application to the voltammetric resolution of ascorbic acid and dopamine in the same sample, Talanta. 42 (1995) 1839-1848. doi:10.1016/0039-9140(95)01638-4.
  3. Y. Yuan, L. Wang, Y. Wang, X. Cui, H. Wang, G. Ding, Electrochemical reaction of riboflavin at carbon nanotubes/Ni composite modified electrode fabricated by composite electrodeposition of carbon-nanotubes and Ni matrix, Proc. Inst. Mech. Eng. Part N J. Nanoeng. Nanosyst. 226 (2012) 81-85. doi:10.1177/1740349912446559.
  4. R.T. Kachoosangi, G.G. Wildgoose, R.G. Compton, Sensitive adsorptive stripping voltammetric determination of paracetamol at multiwalled carbon nanotube modified basal plane pyrolytic graphite electrode, Anal. Chim. Acta. 8 (2008) 54-60. doi:10.1016/j.aca.2008.04.053.
  5. R.N. Goyal, S.P. Singh, Voltammetric determination of paracetamol at C60-modified glassy carbon electrode, Electrochim. Acta. 51 (2006) 3008-3012. doi:10.1016/j.electacta.2005.08.036.
  6. Y. Fan, J.-H. Liu, H.-T. Lu, Q. Zhang, Electrochemical behavior and voltammetric determination of paracetamol on Nafion/TiO2-graphene modified glassy carbon electrode, Colloids Surfaces B Biointerfaces. 85 (2011) 289-292. doi:10.1016/j.colsurfb.2011.02.041.
  7. T.N. Kumar, S. Sivabalan, K.L.N. Phani, Ferrocene-functionalized polydopamine as a novel redox matrix for H 2 O 2 oxidation, J. Mater. Chem. B. 2 (2014) 6081-6088. doi:10.1039/c4tb00823e.
  8. M.E. Wright, 1,1’-Bis(Tri-n-butylstannyl)ferrocene: Selective Transmetalation Applied to the Synthesis of New Ferrocenyl Ligands, Organometallics. 9 (1990) 853-856. doi:10.1021/om00117a049.
  9. M.C. Grossel, D.G. Hamiltont, T.A. Vine, Acylation of Alkyl Ferrocenecarboxylates: An Approach to Unsymmetrical l,l’-Disubstituted Ferrocene Derivatives and Bridged Metallocene Receptors, Tetrahedron Lett. 38 (1997) 4639-4642.
  10. D. Mandal, A. Thakur, S. Ghosh, A triazole tethered triferrocene derivative as a selective chemosensor for mercury(II) in aqueous environment, Polyhedron. 52 (2013) 1109-1117. doi:10.1016/j.poly.2012.06.060.
  11. K. Zhao, H. Song, S. Zhuang, L. Dai, P. He, Y. Fang, Determination of nitrite with the electrocatalytic property to the oxidation of nitrite on thionine modified aligned carbon nanotubes, Electrochem. Commun. 9 (2007) 65-70. doi:10.1016/j.elecom.2006.07.001.
  12. R. Yang, C. Ruan, W. Dai, J. Deng, J. Kong, Electropolymerization of thionine in neutral aqueous media and H2O2 biosensor based on poly(thionine), Electrochim. Acta. 44 (1999) 1585-1596. doi:http://dx.doi.org/10.1016/S0013-4686(98)00283-7.
  13. Z. Dai, J. Chen, F. Yan, H. Ju, Electrochemical sensor for immunoassay of carcinoembryonic antigen based on thionine monolayer modified gold electrode, Cancer Detect. Prev. 29 (2005) 233-240. doi:10.1016/j.cdp.2004.12.003.
  14. Q. Gao, X. Cui, F. Yang, Y. Ma, X. Yang, Preparation of poly(thionine) modified screen-printed carbon electrode and its application to determine NADH in flow injection analysis system, Biosens. Bioelectron. 19 (2003) 277-282. doi:10.1016/S0956-5663(03)00212-4.
  15. A. Salimi, R. Rahmatpanah, R. Hallaj, M. Roushani, Covalent attachment of thionine onto gold electrode modified with cadmium sulfide nanoparticles: Improvement of electrocatalytic and photelectrocatalytic reduction of hydrogen peroxide, Electrochim. Acta. 95 (2013) 60-70. doi:10.1016/j.electacta.2013.01.154.
  16. K. Thenmozhi, S.S. Narayanan, Surface renewable sol-gel composite electrode derived from 3-aminopropyl trimethoxy silane with covalently immobilized thionin, Biosens. Bioelectron. 23 (2007) 606-612. doi:10.1016/j.bios.2007.06.003.
  17. K. Zhang, L. Zhang, J. Xu, C. Wang, T. Geng, H. Wang, et al., A sensitive amperometric hydrogen peroxide sensor based on thionin/EDTA/carbon nanotubes-chitosan composite film modified electrode, Microchim. Acta. 171 (2010) 139-144. doi:10.1007/s00604-010-0409-y.
  18. M. Devendiran, K. Krishna Kumar, S. Sriman Narayanan, Fabrication of a novel Ferrocene/Thionin bimediator modified electrode for the electrochemical determination of dopamine and hydrogen peroxide, J. Electroanal. Chem. 802 (2017) 78-88. doi:10.1016/j.jelechem.2017.08.016.
  19. L. Al-Momani, Synthesis and Characterization of Hydroxyproline Ferrocene-Conjugated Derivatives, Jordan J. Chem. 7 (2012) 141-155.
  20. F. Scholz, B. Lange, Abrasive stripping voltammetry - an electrochemical solid state spectroscopy of wide applicability, Trends Anal. Chem. 11 (1992) 359-367. doi:10.1016/0165-9936(92)80025-2.

Downloads

Published

2018-02-28

Issue

Section

Research Articles

How to Cite

[1]
M. Devendiran, K. Krishna Kumar, S. Sriman Narayanan, " Amperometric Determination of Ascorbic Acid and Riboflavin Using Ferrocene/Thionin Bimediator Modified Electrode, International Journal of Scientific Research in Science and Technology(IJSRST), Online ISSN : 2395-602X, Print ISSN : 2395-6011, Volume 4, Issue 5, pp.628-634, March-April-2018.