NiO/YSZ Composite as a Precursor Material to SOFC Anodic Application

Authors

  • V. Mohanta  Institute of Materials Science, Planetarium Building, Acharya Vihar, Bhubaneswar, Odisha, India
  • S. Otta  Institute of Materials Science, Planetarium Building, Acharya Vihar, Bhubaneswar, Odisha, India
  • B. K. Roul   Institute of Materials Science, Planetarium Building, Acharya Vihar, Bhubaneswar, Odisha, India

Keywords:

Solid state reaction route, NiO/YSZ composite, electrical properties, SOFC

Abstract

The conventional solid state reaction route is used to prepare ceramic composite from commercially available high-purity NiO (Aldrich, 99.99%) and YSZ (Aldrich, 99.9%) powders. Composites were characterized using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) techniques. The NiO/YSZ composites were found to be in crystalline form with homogeneous mixture of YSZ and NiO phases. Impedance measurements and analysis were performed over a frequency range 1 kHz to 2 MHz at different temperatures. Conductivity in various temperature and different nickel contents were also studied which established the fact that the development of NiO/YSZ composite showed remarkable anodic properties which are highly suitable to be used as a precursor material for solid oxide fuel cell (SOFC).

References

  1. B.C. Steele, A. Heinzel, Materials for fuel-cell technologies, Nature. 414 (2001) 345-352.
  2. S.A. Acharya, The effect of processing route on sinterability and electrical properties of nano-sized dysprosium-doped ceria, J. Pow. Sou. 198 (2012) 105-111.
  3. B.S. Prakashn, S.S. Kumar, S.T. Aruna, Properties and development of Ni/YSZ as an anode material in solid oxide fuel cell: a review, Renew. Sust. Energy Rev. 36 (2014) 149-179.
  4. M. Mogensen, S. Scare, Kinetic and geometric aspects of solid oxide fuel cell electrodes, Solid State Ion. 86 (1996) 1151-1160.
  5. Z.P. Shao, W. Zhou, Advanced synthesis of materials for intermediate temperature solid oxide fuel cells, Prog. Mater. Sci. 57 (2012) 804-874.
  6. J.S. Cronin, J.R.Wilson, S.A.Barnett, Impact of pore microstructure evolution on polarization resistance of Ni-Yttria-stabilized zirconia fuel cell anodes, J. Power Sources 196 (2011) 2640?2643.?
  7. M. Brown, S. Primdahl, M. Mogensen, Structure/performance relations for Ni/yttria- stabilized zirconia anodes for solid oxide fuel cells,J. Electrochem. Soc. 147 (2000) 475?485.
  8. W.P. Pan, K.F. Chen, N. Ai, Z. Lu, S.P. Jiang, Mechanism and kinetics of Ni-Y2O3-ZrO2 hydrogen electrode for water electrolysis reactions in solid oxide electrolysis cells, J. Electrochem. Soc. 163 (2016) 106-114.
  9. B.K. Roul, Modulated structural characteristics and microwave properties of spray pyrolyzed superconducting BCSCO, J. of Supercond. 14(4) 2001 531-537.
  10. K.L. Singh, A. Kumar, A.P. Singh and S.S. Sekhan, Microwave? processing: A potential technique for preparing NiO-YSZ composite and Ni-YSZ cermet, Bull. Mater. Sci. 31(4) (2008) 655-664.
  11. G. Laukaitis, O. Liukpetryte, J. Dudonis, D. Milcius, The Influence of Thermal Annealing on Texture of Yttrium Stabilized Zirconia Thin Films, Materials Science (Medziagotyra), 13 (4) 2007.
  12. X. Xi, H. Abe and M. Naito, Effect of composition on microstructure and polarization resistance of solid oxide fuel cell anode NiOYSZ composite made by co-precipitation, Ceram. Int. 40(10) (2014) 16549-16555.
  13. J. Kim, K.H. Cho, I. Kagomiya, and K. Park, Structural studies of porous Ni/YSZ cermets fabricated by the solid state reaction method, Ceramics International, 39 (2013) 7467-7474.
  14. J.J. Haslam, A.Q. Pham, B.W. Chung, J.F. DiCarlo, R.S. Glass, Effects of the use of pore formers on performance of an anode supported solid oxide fuel cell, Journal of the American Ceramic Society, 88 (2005) 512-518.
  15. S.K. Pratihar, A. Dassharma, H.S. Maiti, Processing microstructure property correlation of porous Ni-YSZ cermets anode for SOFC application, Materials Reasearch Bulletin, 40 (2005) 1936-1944.
  16. A. Kuzukevics, S. Linderoth, Interaction of NiO with yttria-stabilized zirconia, Solid State Ionics, 93 (1997) 255-261.
  17. U.B. Sontu, V. Yelasani, V.R.R. Musugu, Structural, electrical and magnetic characteristics of nickel substituted cobalt ferrite nano particles, synthesized by self combustion method, Journal of Magnetism and Magnetic Materials, 374 (2015) 376-380.
  18. Y. M. Park and G. M. Choi, J. Electrochem. Soc., 146 (1999) 883.
  19. M. W. Vernon and M. C. Lovell, J. Phys. Chem. Solids, 27 (1966) 1125.
  20. D. S. McLachlan, M. Blaszkiewicz, and R. E. Newnham, J. Am. Ceram. Soc., 73 (1990) 2187.
  21. F. C. Fonseca, D. Z. de Florio, V. Esposito, E. Traversa, E.N.S. Muccillo, and R. Muccillo, Mixed Ionic?Electronic YSZ/Ni Composite for SOFC Anodes with High Electrical Conductivity, Journal of The Electrochemical Society, 153 (2) (2006) A354-A360.
  22. M. Mamak, N. Coombs, and G. Ozin, Adv. Funct. Mater., 11 (2001) 59.
  23. Y. M. Park and G. M. Choi, Solid State Ionics, 120 (1999) 265.
  24. V. Esposito, D. Z. de Florio, F. C. Fonseca, E. N. S. Muccillo, R. Muccillo, and E. Traversa, J. Eur. Ceram. Soc., 25 (2005) 2637.
  25. W.Z. Zhu, and S.C. Deevi, A review on the status of anode materials for solid oxide fuel cells, Mater. Sci. and Eng. A 362(1-2) (2003) 228-239.

Downloads

Published

2018-02-28

Issue

Section

Research Articles

How to Cite

[1]
V. Mohanta, S. Otta, B. K. Roul , " NiO/YSZ Composite as a Precursor Material to SOFC Anodic Application, International Journal of Scientific Research in Science and Technology(IJSRST), Online ISSN : 2395-602X, Print ISSN : 2395-6011, Volume 4, Issue 2, pp.1397-1403, January-February-2018.