Fluidization of Fine particles : Acoustics Field Approach

Authors

  • M. Shakebuddin  Research Scholar, Department of Mechanical Engineering , M.I.E.T., Gondia, Gondia, Maharashtra, India
  • Akash Langde  Professor , Department of Mechanical Engineering , A.C.E.T., Nagpur,Maharashtra,India

Keywords:

Newtonian or non-Newtonian fluids, Van Der Waals force, acoustic field, homogeneous fluidization

Abstract

Fluidization technology has been a very important process in chemical, environmental, and energy industries. Fluid dynamic characteristics in a fluidized bed has a direct binding on solid mixing and heat and mass transfers between gas and solid phases. Suspensions of fine particles in either Newtonian or non-Newtonian fluids finds its presence in physical, engineering and biological sciences. Reinforced composites, paints, paper, slurries, cements etc which are particle laden products need the processing of fine particles. Forces like the Van Der Waals force capillary and cohesive forces leads to aggregate formation in liquids which prevents the fine particles from suspending properly. Way out from this problem is to use forces like magnetic field, electrical field, acoustic field and mechanical. This process is termed as homogeneous fluidization. In this work we try to explore the effects of acoustic field in homogenous fluidization document.

References

  1. Geldart, D. Types of Gas Fluidization. Powder Technol. 1973, 7,285-292.
  2. Morse, R. D. Sonic energy in granular solid fluidization. Ind. Eng. Chem. Res. 1955, 47, 1170-1175.
  3. Levy, E. K.; Shnitzer, I.; Masaki, T. Effect of an acoustic field on bubbling in a gas fluidized bed. Powder Technol. 1997, 90, 53-57.
  4. Herrera, C. A.; Levy, E. K. Bubbling characteristics of sound-assisted fluidized beds. Powder Technol. 2001, 119, 229-240.
  5. Chirone, R.; Massimilla, L.; Russo, S. Bubble-free fluidization of a cohesive powder in an acoustic field. Chem. Eng. Sci. 1993, 48, 41-52.
  6. Zhu, C.; Liu, G. L.; Yu, Q. Sound assisted fluidization of nanoparticle agglomerates. Powder Technol. 2004, 141, 119-123.
  7. Liu, H.; Guo, Q. J.; Chen, S. Sound-Assisted Fluidization of SiO2
  8. Nanoparticles with Different Surface Properties. Ind. Eng. Chem. Res. 2007, 46, 1345-1349.
  9. Guo, Q. J; Shen, W. Z; Liu, H. Influence of sound wave characteristics on fluidization behaviors of ultrafine particles. Chem. Eng. J 2006, 119, 1-9.
  10. Guo, Q. J.; Li, Y.; Wang, M. H.; Shen, W. Z. Fluidization behaviors for coating cohesive particles. Chem. Eng. Technol. 2005, 28, 752-756.
  11. Guo, Q. J.; Li, Y.; Wang, M. H.; Shen, W. Z.; Yang, C. H. Fluidization characteristics of SiO2 nanoparticles in an acoustic fluidized bed. Chem. Eng. Technol. 2006, 29, 78-86.
  12. Guo, Q. J.; Yang, X. P.; Shen, W. Z. Agglomerate size in an acoustic fluidized bed with sound assistance. Chem. Eng. Process. 2007, 46, 307-313.
  13. Xu, C. B.; Cheng, Y.; Zhu, J. Fluidization of fine particles in a sound field and identification of group C/A particles using acoustic waves. Powder Technol. 2006, 161, 227-234.
  14. Leu, L. P.; Li, J. T.; Chen, C. M. Fluidization of group B particles in an acoustic field. Powder Technol. 1997, 94, 23-28.
  15. Rao, T. R.; Bheemarasetti, J. V. R. Minimum fluidization velocities of mixtures of biomass and sands. Energy 2001, 26, 633-644.
  16. Clarke, K. L.; Pugsley, T.; Hill, G. A. Fluidization of moist sawdust in binary particle systems in a gas-solid fluidized bed. Chem. Eng. Sci. 2005, 60, 6909-6918.
  17. Sun, Q. Q.; Lu, H. L.; Liu, W. T. Simulation and experiment of segregating/mixing of rice husk-sand mixture in a bubbling fluidized bed. Fuel 2005, 84, 1739-1748.
  18. Pilar, A. M.; Gracia-Gorria, F. A.; Corella, J. Minimum and maximum velocities for fluidization for mixtures of agricultural and forest residues with a second fluidized solid. Int. Chem. Eng. 1992, 32, 95-102.
  19. Abdullah, M. Z.; Husain, Z.; Yin, S. L. Analysis of cold flow fluidization test results for various biomass fuels. Biomass Bioenergy 2003, 24, 487-494.
  20. Cui, H. P.; Grace, J. R. Fluidization of biomass particles: A review of experimental multiphase flow aspects. Chem. Eng. Sci. 2007, 62, 45- 55.
  21. Joaquin, R.; Enrique, V.; Luis, P. Predicting the minimum fluidization velocity of polydisperse mixtures of scrap-wood particles. Powder Technol. 2000, 111, 245-251.
  22. Jin, Y.; Zhu, J. X.; Wang, Z. W. Fluidization Engineering Principles; TsingHua University Press: Beijing, 2001.
  23. Goosens, W. R.; Dumont, G. L.; Spaepen, G. L. Fluidization of binary mixtures in the laminar flow region. Chem. Eng. Symp. Ser. 1971, 67, 38-45.
  24. Grace, J. R. Contacting modes and behaviour classification of gassoild and other two-phase suspensions. AIChE J. 1986, 64, 353-363.
  25. Chen, J. J. J. Comment on ’Improved equation for the calculation of minimum fluidization velocity′. Ind. Eng. Chem. Res. 1987, 26, 633- 634.
  26. Llauro′, F. X; Llop, M. F. Characterization and classification of fluidization regimes by non-linear analysis of pressure fluctuations. Int. J. Multiphase Flow 2006, 32, 1397-1404.
  27. Waheed, A. A; Emad, M. A; Mohamed, N. A. Prediction of regime transitions in bubble columns using acoustic and differential pressure signals. Chem. Eng. J. 2007, 133, 139-149.

Downloads

Published

2018-02-28

Issue

Section

Research Articles

How to Cite

[1]
M. Shakebuddin, Akash Langde, " Fluidization of Fine particles : Acoustics Field Approach , International Journal of Scientific Research in Science and Technology(IJSRST), Online ISSN : 2395-602X, Print ISSN : 2395-6011, Volume 4, Issue 2, pp.190-193, January-February-2018.