Cleanup Textile Azo Dye Pollution by Using Silver Nanoparticles of Bacteria Isolated From Shrimp Shell Contaminated Soil in Thoothukudi Coast

Authors(2) :- G. Anusiya, G. Flora

Cryogenic silver nanoparticles (AgNPs) synthesized by using bacteria (Acinetobacter sp. and Bacillus sp.) isolated from shrimp shell contaminated soil in Tuticorin coast and it was confirmed by UV–visible spectroscopy. AgNPs show a peak around 540nm (Acinetobacter sp.) and 510nm (Bacillus sp.). Further the efficiency of synthesized AgNPs was assessed for the decolorization of azo dyes such as Congo red, Acid Orange 5 and Black 7984. Decolourization assay was measured in the terms of percentage decolorization using UV- Spectrophotometer. The results revealed that bio-synthesized silver nanoparticles using the selected bacteria were found to be negligible in degrading the selected dyes.

Authors and Affiliations

G. Anusiya
Department of Botany, St. Mary's College (Autonomous), Thoothukudi, Tamil Nadu, India
G. Flora
Department of Botany, St. Mary's College (Autonomous), Thoothukudi, Tamil Nadu, India

AgNPs, Azo dye, Acinetobacter sp, Bacillus sp, decolourization, congo red, acid orange 5, black 7984.

  1. Catauro, M., Raucci, M. G., Gaetano, F. D. and Marotta, A. Antibacterial and bioactive silver-containing Na2O×CaO× 2SiO2 glass prepared by sol-gel method. Journal of Materials Science :Materials in Medicine. 2004. 15(7): 831 – 837.
  2. Crabtree, J. H., Burchette, R. J., Siddiqi, R. A., Huen, I. T., Hadnott, L. L. and Fishman, A. The efficacy of silver-Ion implanted catheters in reducing peritoneal dialysis- related Infections. Peritoneal Dialysis International. 2003.23(4): 368- 374.
  3. Edelstein, S. and Cammarata, R. C. “Nanomaterials: Synthesis, Properties and Applications,” Institute of Physics Publishings, 1996.
  4. Jauho, P. and Buzaneva, E. V. “Frontiers in Nanoscale Science of Micron/Submicron Devices,” Kluwer Academic Publishers, 1996.
  5. Mcneil, S. E. “Nanotechnology for the Biologist,” Journal of Leukocyte Biology. 2005. 78: 85.
  6. Gaidhani, S., Singh, R., Singh, D., Patel, U., Shevade, K. and Yeshvekar, R. Biofilm disruption activity of silver nanoparticles synthesized by Acinetobacter calcoaceticus. Mater Lett. 2013. 108: 324–327.
  7. Nagajyothi, P. C. and Lee, K. D. Synthesis of plant-mediated silver nanoparticles using Dioscorea batatas rhizome extract and evaluation of their antimicrobial activities. J Nanopart. 2013. doi:10.1155/2011/573429. 
  8. Mukherjee, P., Ahmad, A., Mandal, D., Senapati, S., Sainkar, S. R., Khan, M. I. et al. Bioreduction of AuCl by the fungus, Verticillium sp. and surface trapping of the gold nanoparticles formed. Angew Chem Int Ed Engl. 2001. 40: 3585–3588.
  9. Bull, A. T., Goodfellow, M. and Slater, J. H. “Biodiversity as a Source of Innovation in Biotechnology,” Annual Review of Microbiology., 1992. 46: 219.
  10. Southham, G. and Beveridge, T. J. “The Occurrence of Sulfur and Phosphorus within Bacterially Derived Crystalline and Pseudocrystalline Octahedral Gold Formed in Vitro,” Geochimica et Cosmochimica Acta. 1996. 60: 4369.
  11. Beveridge, T. J. and Murray, R. G. E. “Sites of Metal Deposition in the Cell Wall of Bacillus Subtilis,” Journal of Bacteriology. 1980. 141: 876.
  12. Bruins, M. R., Kapil, S. and Oehme, F. W. Microbial resistance to metals in the environment. Ecotoxicol. Environ. Safety. 2000. 45: 198-207.
  13. Beveridge, T. J., Hughes, M. N., Le, H., Leung, K. T. and Poole, R. K. Metal-microbe interactions: Contemporary approaches. Adv. Microb. Physiol., 1997. 38: 177-243.
  14. Sastry, M., Ahmad, A., Khan, M. I. and Kumar, R. Biosynthesis of metal nanoparticles using fungi and actinomycete. Curr. Sci., 2003. 85: 162-170.
  15. Singh, M., Manikandan, S. and Kumaragure, A. K. Nanoparticles: A new technology with wide applications. Res. J. Nanosci. Nanotechnol., 2011. 1: 1-11.
  16. Krithika, S. and Chellaram, C. Isolation, screening, and characterization of chitinase producing bacteria From marine wastes. International Journal of Pharmacy and Pharmaceutical Sciences. 2016. 8(5): 34 – 36.
  17. Setia, N. I. and Suharjono. Chitinolytic assay and dentification of bacteria isolated from shrimp waste based on 16S rDNA sequences. Advances in Microbiology. 2015. 5(7): 541-548.
  18. Sadowski, Z., Maliszewskaih, B., Grochowalska, I., Polowczyk, T. and Kozlecki, T. Synthesis of silver nanoparticles using microorganisms. Materials Science- Poland. 2008. 26(2): 419-424.
  19. Gurunathan, S., Kalishwaralal, K., Vaidyanathan, R., Deepak, V., Pandian, S. R. K., Muniyandi, J., Hariharan, N. and Eom, S. H. “Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli”. Colloids and Surfaces B: Biointerfaces. 2009. 74: 328–335.
  20. Priya, M. M., Selvi, B. K. and Paul, J. A. J. “Green Synthesis of Silver Nanoparticles from the Leaf Extracts of Euphorbia Hirta and Nerium Indicum”. 2011. Digest Journal of Nanomaterials and Biostructures. 6(2): 869 – 877.
  21. Kalishwaralal, K., Deepak, V., Ramkumarpandian, S., Nellaiah, H. and Sangiliyandi, G. Extracellular biosynthesis of silver nanoparticles by the culture supernatant of Bacillus licheniformis. Materials Letters. 2008. (29): 4411–4413
  22. Forbes, N. A., Yuan, M. S. T. T. and Desilva, M. N. Silver nanoparticle storage stability in aqueous and biological media. 2015. Naval medical research unit San Antonio.
  23. Akkiraju, C. P., Tathe, S. P. and Mamillapalli, S. Green Synthesis of Silver Nanoparticles from Punica granatum L. and its antimicrobial activity. Advances in Applied Science Research. 2017. 8(1):42-49.
  24. Choi, B., Lee, H., Jin, S., Chun, S. and Kim, S. Characterization of the optical properties of silver nanoparticle films. Nanotechnology. 2007. 18(7): 750-760.
  25. Harsha, N., Ranya, R., Shukla, S., Biju S., Reddy, M. L. P. and Warrier, K. G. K. Effect of silver and Palladium on dye removal characteristics of anatase-Titania nanotubes. Journal of Nanoscience and Nanotechnology. 2011. 11(3): 2440-2449.
  26. Modi, S., Pathak, B. and Fulekar, M. H. Microbial synthesized silver nanoparticles for decolorization and biodegradation of azo dye compound. Journal Environmental science and Nanotechnology. 2015. 4(5): 37-46.
  27. Hu Tai-lee and Wu S. C. Assessment of the effect of azo dye Rp2B on the growth of nitrogen fixing cyanobacterium- Anabena sp. Biores Technol 2001 .77(1): 93-95.

Publication Details

Published in : Volume 4 | Issue 9 | July-August 2018
Date of Publication : 2018-07-30
License:  This work is licensed under a Creative Commons Attribution 4.0 International License.
Page(s) : 12-17
Manuscript Number : IJSRST1845297
Publisher : Technoscience Academy

Print ISSN : 2395-6011, Online ISSN : 2395-602X

Cite This Article :

G. Anusiya, G. Flora, " Cleanup Textile Azo Dye Pollution by Using Silver Nanoparticles of Bacteria Isolated From Shrimp Shell Contaminated Soil in Thoothukudi Coast", International Journal of Scientific Research in Science and Technology(IJSRST), Print ISSN : 2395-6011, Online ISSN : 2395-602X, Volume 4, Issue 9, pp.12-17, July-August-2018.
Journal URL : https://ijsrst.com/IJSRST1845297
Citation Detection and Elimination     |      | | BibTeX | RIS | CSV

Article Preview