Green Synthesis and characterization of ZnO- Ag Nanocomposite by Thymus vulgaris

Authors

  • Mina Zare  DOS in Earth Science, Mansagangothri, University of Mysore, Mysore, India
  • K. Namratha  Centre for Materials Science and Technology, Vijnana Bhavana, University of Mysore, Mysore, India
  • K. Byrappa  

Keywords:

Hydrothermal synthesis, Thyme leaf extract, ZnO-Ag Nanocomposite, Characterization

Abstract

In this study, ZnO-Ag nanocomposite (NCs) was synthesized less than 20 nm through a simple and eco-friendly bio-hydrothermal method by using aqueous Thymus vulgaris (Thyme) leaf extract. Thyme leaf extract was used as a reducing agent and surfactant in the green synthesis of ZnO-Ag NCs. Crystal structure, Functional group, morphology, chemical elemental, the band gap of ZnO-Ag NCs were characterized by using powder X-ray diffraction, Fourier Transform Infrared Spectroscopy, Transmission Electron Microscopy, Energy Dispersive X-ray analysis, UV-visible spectroscopy, respectively. TEM results confirmed the size and morphology of nanocomposite. The influence of silver nitrate concentration in the formation of ZnO-Ag NCs was studied. This study future aims that to use biocompatible ZnO-Ag nanocomposite for biological application and food packaging.

References

  1. I. Khan, K. Saeed, and I. Khan, Nanoparticles: Properties, applications and toxicities, Arab. J. Chem., 2017.
  2. X.-F. Zhang, Z.-G. Liu, W. Shen, and S. Gurunathan, (2016.). Silver Nanoparticles: Synthesis, Characterization, Properties, Applications, and Therapeutic Approaches. Int. J. Mol. Sci., 17 (9): p. 1534.
  3. R. Sahay, V. J. Reddy, and S. Ramakrishna, (2014). Synthesis and applications of multifunctional composite nanomaterials, 9:25.
  4. S. Ghosh, V. S. Goudar, K. G. Padmalekha, S. V. Bhat, S. S. Indi, and H. N. Vasan, (2012). ZnO/Ag nanohybrid: synthesis, characterization, synergistic antibacterial activity and its mechanism, RSC Adv., 2 (3): p. 930–940.
  5. T. Ghosh, A. B. Das, B. Jena, and C. Pradhan, (2015). Antimicrobial effect of silver zinc oxide (Ag-ZnO) nanocomposite particles, Front. Life Sci., 8 (1):p. 47–54.
  6. Z. Fan and J. G. Lu, (2005). Zinc oxide nanostructures: synthesis and properties. J. Nanosci. Nanotechnol. 5 (10): p. 1561–1573.
  7. [7] K. J. I. K. Lee, Study of Stability of ZnO Nanoparticles and Growth Mechanisms of Colloidal Zno Nanorods, 2005.
  8. R. Marsalek, (2005). Particle Size and Zeta Potential of ZnO, APCBEE Procedia. (9): p. 13–17.
  9. A. Hezam et al., (2017).Heterogeneous growth mechanism of ZnO nanostructures and the effects of their morphology on optical and photocatalytic properties, CrystEngComm. 19 (24): p. 3299–3312.
  10. S. H, Manikandan, B. Ahmed M, G. V, and G. V, (2017). Enhanced Bioactivity of Ag/ZnO Nanorods-A Comparative Antibacterial Study (Sbds), J. Nanomed. Nanotechnol, 4(3): p. 1–7.
  11. K. Byrappa and M. Yoshimura, Hydrothermal Technology—Principles and Applications. 2001.
  12. H. Zhang, X. Ma, J. Xu, J. Niu, and D. Yang, (2003). Arrays of ZnO nanowires fabricated by a simple chemical solution route, Nanotechnology, 14 (4): p. 423–426.
  13. Y. Zheng, L. Zheng, Y. Zhan, X. Lin, Q. Zheng, and K. Wei, (2007). Ag/ZnO Heterostructure Nanocrystals: Synthesis, Characterization, and Photocatalysis, Inorg. Chem. 46 (17): p. 6980–6986.
  14. S. C. Motshekga, S. S. Ray, M. S. Onyango, and M. N. B. (2013). Momba, Microwave-assisted synthesis, characterization and antibacterial activity of Ag/ZnO nanoparticles supported bentonite clay, J. Hazard. Mater. (262): p. 439–446.
  15. M. S. Jadhav, S. Kulkarni, P. Raikar, D. A. Barretto, S. K. Vootla, and U. S. Raikar, (2018). Green biosynthesis of CuO & Ag–CuO nanoparticles from Malus domestica leaf extract and evaluation of antibacterial, antioxidant and DNA cleavage activities, New J. Chem. 42 (1): p. 204–213.
  16. R. Zamiri et al., (2014). Far-infrared optical constants of ZnO and ZnO/Ag nanostructures, RSC Adv. 4 (40): p. 20902–20908.
  17. S. Aiswarya Devi, M. Harshiny, S. Udaykumar, P. Gopinath, and M. Matheswaran, (2017). Strategy of metal iron doping and green-mediated ZnO nanoparticles: dissolubility, antibacterial and cytotoxic traits, Toxicol. Res. (Camb). 6 (6): p. 854–865.
  18. R. Zamiri et al., (2014). Far-infrared optical constants of ZnO and ZnO/Ag nanostructures, RSC Adv., 4 (40): p. 20902–20908.
  19. P. Devaraj, P. Kumari, C. Aarti, and A. Renganathan, (2013). Synthesis and Characterization of Silver Nanoparticles Using Cannonball Leaves and Their Cytotoxic Activity against MCF-7 Cell Line, J. Nanotechnol. (2013): p. 1–5.
  20. K. Saoud, R. Alsoubaihi, N. Bensalah, T. Bora, M. Bertino, and J. Dutta, (2015). Synthesis of supported silver nano-spheres on zinc oxide nanorods for visible light photocatalytic applications, Mater. Res. Bull., (63): p. 134–140.
  21. M. Zare, K. Namratha, K. Byrappa, D. M. Surendra, S. Yallappa, and B. Hungund, Surfactant Assisted Solvothermal Synthesis of ZnO Nanoparticles and Study of their Antimicrobial and Antioxidant Properties, J. Mater. Sci. Technol., 2017.
  22. T. Ibrahim, H. Alayan, and Y. Al Mowaqet, (2012). The effect of Thyme leaves extract on corrosion of mild steel in HCl, Prog. Org. Coatings. 75 (4): p. 456–462.
  23. S. Adhikari, A. Banerjee, N. K. Eswar, D. Sarkar, and G. Madras, (2015). Photocatalytic inactivation of E. coli by ZnO–Ag nanoparticles under solar radiation, RSC Adv., 5 (63): p. 51067–51077.
  24. Y. Li, X. Zhao, and W. Fan, (2011). Structural, Electronic, and Optical Properties of Ag-Doped ZnO Nanowires: First Principles Study, J. Phys. Chem. C, 115 (9): p. 3552–3557.

Downloads

Published

2018-04-30

Issue

Section

Research Articles

How to Cite

[1]
Mina Zare, K. Namratha, K. Byrappa, " Green Synthesis and characterization of ZnO- Ag Nanocomposite by Thymus vulgaris, International Journal of Scientific Research in Science and Technology(IJSRST), Online ISSN : 2395-602X, Print ISSN : 2395-6011, Volume 4, Issue 5, pp.1636-1640, March-April-2018.