Structural and Dielectric Properties of Multiferroic 90BiFeO3-10BaTiO3 Ceramics Synthesized by Sol-Gel

Authors

  • Rajesh R. Raut  Science and Humanities Department, Sanmati Engineering College, SGB Amravati University, Amravati, Maharashtra. India
  • Chandrakant S.Ulhe  Departmen Department of Physics, Yashvantrao Chavan Arts and Science SGB Amravati University, Amravati, Maharashtra, India

Keywords:

Ceramic, Sol-Gel, Dielectric, XRD, SEM

Abstract

90BiFeO3–10BaTiO3 (90BFO–10BT) multiferroic material was synthesized by a Sol-Gel method. We have reported microstructure with the enhanced dielectric properties of multiferroic mixed-perovskite 90BFO–10BT compound by scanning electron microscopy (SEM) and conventional dielectric measurements. XRD observations showed secondary phase appearance during synthesis because of instability of Bismuth and charge fluctuation of Fe. Dielectric behavior of the 90BFO–10BT ceramics were studied at various temperature and frequency. It was also found that doping of BiFeO3 by insulating BaTiO3 enhanced the dielectric properties. The dielectric constant was found to be very high (εr′ = 102, for T = 140°C). The Maxwell–Wagner type relaxation in the sample results a considerably high dielectric constant in 90BFO–10BT ceramics.

References

  1. N. Fujimura, S. Azuma, N. Aoki, T. Yoshimura and T. Ito: J. Appl. Phys. (1996) 80,7084.
  2. N. Fujimura, T. Ishida, T. Yoshimura and T. Ito: Appl. Phys. Lett. (1996) 69,1011
  3. T. Shao, A. Scholl, F. Zavaliche, K. Lee, M. Barry, A. Doran, M.P. Cruz, Y.H. Chu, C. Ederer, N.A., Spaldin, R.R. Das, D. M. Kim, S.H. Baek, C.B. Eom, R. Ramesh, Nature Materials(2006) 5 , 823-829.
  4. H. Fukumura, S. Matsui, N. Tonari, T. Nakamura, N. Hasuike,  K. Nishio, T. Isshiki, H. Harima, K. Kisoda,   Acta Physica Polonica A (2009) 116, 47-50.
  5. A.Z. Simoes, A.H.M. Gonzalez, L.S. Cavalcante, C.S. Riccardi, E. Longo, J.A. Varela, Journal of Applied  Physics (2007) 101,  1-6 074108.
  6. V.A. Khomchenko, D.A. Kiselev, M. Kopcewicz, M. Maglione, V.V. Shvartsman, P. Borisov, W.  Kleemann, A.M.L. Lopes, Y.G. Pogorelov, J.P. Araujo, R.M. Rubinger, N.A. Sobolev, J.M. Vieira, A.L. Kholkin, Journal of Magnetism and Magnetic Materials (2009),321,  1692-1698.
  7. S.V. Kiselev, R.P. Ozerov, G.S. Zhdanov, Sov. Phys. Dokl. (1963) 7, 742.
  8. P. Fischer, M. Polomska, I. Sosnowska, M. Szymanski, J. Phys. (1980)  C 13, 1931.
  9. I. Sosonowska, T. Peterlin-Neumaier, and E. Steichele,J. Phys. (1982), C15, 4835.
  10. G.D. Achenback, W.J. James,andR. Gerson, J. Amer. Ceram. Soc. (1967) 50, 437.
  11. C. Tabares-Munoz, J.P. Rivera, A. Bezinges, A. Monnhier, and H. Schmid, Jpn. J. Appl. Phys. (1985) 24, 24.
  12. R. Rai, I. Bdikin, M.A. Valente, A.L. Kholkin, Materials Chemistry and Physics (2010) 119, 539-545.
  13. R.A.M. Gotardo, I.A. Santos, L.F. Co ´tica, E.R. Botero, D. Garcia, J.A. Eiras, Scripta Materialia (2009) 61,508-511.
  14. W. Sakamoto, A. Iwata, M. Moriya, T. Yogo, Materials Chemistry and Physics (2009) 116, 536-541
  15. M.M. Kumar, A. Srinivas, S.V. Suryanarayana, J. Appl. Phys. (2000) 87, 855.
  16. M.T. Buscaglia, L. Mitoseriu, V. Buscaglia, I. Pallecchi, M. Viviani, P. Nanni, A.S. Siri, J. Eur. Ceram.  Soc. (2006)26, 3027.
  17. R. Rai, I. Bdikin, M.A. Valente, A.L. Kholkin, Mater. Chem. Phys. (2010) 119, 539.
  18. R.A.M. Gotardo, I.A. Santos, L.F. Co´tica, E.R. Botero, D. Garcia, J.A. Eiras, Scr. Mater. (2009) 61, 508.
  19. S.O. Leontsev, R.E. Eitel, J. Am. Ceram. Soc. (2009) 92, 2957.
  20. C. Zhou, H. Yang, Q. Zhou, G. Chen, W. Li, H. Wang, J. Mater. Sci.: Mater. Electron. (2013) 24, 1685.
  21. H.Y. Dai, J. Chen, T. Li, D.W. Liu, R.Z. Xue, H.W. Xiang, Z.P. Chen, J. Mater. Sci.: Mater. Electron. (2015)26, 3717.
  22. M. Kumar, S. Shankar, O. Thakur, A. Ghosh, J. Mater. Sci. Mater. Electron. (2015) 26, 1427.
  23. J. Bernard, Piezoelectric Ceramics (Academic Press, New York,( 1971).
  24. G. Arlt, D. Hennings, G. de With, J. Appl. Phys. (1985) 58, 1619.
  25. Yu. E. Roginskaya, Yu. Ya. Tomashpol’ski, Yu. N. Venevtsev, V. M. Petrov, and G. S. Zhdanov, Sov. Phys. (1966)  JETP23, 490.
  26. I. R. Teague, R. Gerson, and W. J. James, Solid State Commun. (1970) 8, 1073.
  27. N. N. Krainik, N. P. Khuchua, V. V. Zhdanova, and V. A. Evseev, Fiz. Tverd. Tela (S.-Peterburg) (1966) 8, 816 [Sov. Phys. Solid State].
  28. R. T. Smith, G. D. Achenbach, R. Gerson, and W. J. James, J. Appl. Phys. (1968) 39, 70.
  29. I.H. Ismailzade, R.M. Ismailov, A.I. Alekberov, and F.M. Salaev, phys. stat. sol. (a) (1981) 68, K81.
  30. M.M. Kumar, A. Srinivas, S.V. Suryanarayana, J. Appl. Phys. (2000) 87, 855.
  31. W. Li, J. Qi, Y. Wang, L. Li, Z. Gui, Mater. Lett., (2002) 57, 1.
  32. A. Umeri, T. Kuku, N. Scuor, V. Sergo, J. Mater. Sci. (2008) 43, 922.
  33. Y. Yuan, S. Zhang, W. You,  Mater. Lett., (2004).58, 1959.
  34. Jayant Kolte, Devidas Gulwade, Aatish Daryapurkar, Materials Science Forum, (2012) Vols 702-703  pp 1011-1014.
  35. T. Moriya, Phys. Rev., (1960) 120, 91.
  36. P. Salame, R. Drai, O. Prakash, A.R. Kulkarni, Ceram. Int., (2014) 40, 4491.

Downloads

Published

2018-01-30

Issue

Section

Research Articles

How to Cite

[1]
Rajesh R. Raut, Chandrakant S.Ulhe, " Structural and Dielectric Properties of Multiferroic 90BiFeO3-10BaTiO3 Ceramics Synthesized by Sol-Gel, International Journal of Scientific Research in Science and Technology(IJSRST), Online ISSN : 2395-602X, Print ISSN : 2395-6011, Volume 4, Issue 1, pp.257-261, January-February-2018.