
IJSRST1733109 | 28 March 2017 | Accepted: 07 April 2017 | March-April-2017 [(2)3: 01-05]

© 2017 IJSRST | Volume 3 | Issue 3 | Print ISSN: 2395-6011 | Online ISSN: 2395-602X
Themed Section: Science and Technology

 1

Data Mining with Elastic
Mani Nandhini Sri, Mani Nivedhini, Dr. A. Balamurugan

Sri Krishna College of Technology Coimbatore, Tamil Nadu, India

ABSTRACT

Recently, new ―big data‖ technologies and architectures, including Hadoop and NoSQL databases, have evolved to

better support the needs of organizations analyzing such data. In particular, Elastic a distributed full-text search

engine explicitly addresses issues of scalability, big data search, and performance that relational databases were

simply never designed to support. In this paper, we reflect upon our own experience with Elastic and highlight its

strengths and weaknesses for performing modern mining software repositories research.

Keywords: Hadoop, NoSQL, Data Mining, Elastic, RESTful API, RDBMS, MySQL

I. INTRODUCTION

The ―cloud computing‖ and ―big data‖ have become less

exotic as various search providers aggregate the data

from all around the Web. Analysts now understand that

they can access whatever information they need almost

instantly; in turn, this drives them to search for new

tools that can ease their everyday routines as the scale of

the tasks at hand broaden and become more ambitious.

Most of data analysis process require significant

preprocessing of the voluminous raw data: it must be

cleansed, filtered, and organized into a usable format for

querying. Often, this step is a one-time effort because

the goal is to perform an ―offline analysis‖, rather to

provide ongoing support for interactive querying of

―live‖ and growing online data. Consequently,

researchers often opt to store the processed data in a well

known RDBMS, such as MySQL or Oracle, which are

simple to set up and easy to query. While this kind of

approach is likely the best choice for some tasks, it is not

well suited to the needs of Big Data analysis, which

requires supporting much larger volumes of data,

accommodating the real-time nature of incoming data,

and providing quick responses to queries. In a traditional

RDBMS, large data requires the creation of many

indices to reduce the execution time of queries; at the

same time the presence of indices greatly slows the

process of updating the data. Since neither of these

choices is practical in the presence of Big Data, it is

worthwhile to consider what other approaches might

work well in this space. In this paper we report on our

experience with Elastic, an open source search engine

that provides near real-time search and full-text search

capability, as well as a RESTful API.

II. METHODS AND MATERIAL

1. ELASTIC

Elastic is an open source full-text search engine written

in Java that is designed to be distributive, scalable, and

near real-time capable. The Elastic server is easy to

install, and the default configuration supplied with the

server is called node. sufficient for a standalone use

without tweaking, although most users will eventually

want to fine tune some of the parameters. A running

instance of the Elastic server is called a node, and two or

more nodes can form the Elastic cluster. To set up an

Elastic cluster, the only value that needs to be set in the

configuration file is the name of a cluster; Elastic will

take care of discovering nodes on the network and

binding them into a cluster.

2. Background

While Elastic is based on Apache Lucene; each Elastic

index consists of one or more Lucene indices, called

shards. The number of shards that each index has is a

fixed value that is defined before the index can be

created. When a document is added to an index, the

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

318

Elastic server defines the shard that will be responsible

for storing and indexing that document. By doing this,

Elastic balances the loads between available shards and

also improves overall performance, since all shards can

be used simultaneously. While such automatic sharding

is only one key part of the distributed nature of Elastic,

the other part of it is automatic distribution of shards

among the nodes in a cluster. For example, imagine we

have an index that consists of six shards and that our

cluster has only one node. In this case, all six shards will

be on the same node; however, if we add one more node

to the cluster, Elastic will automatically move half of the

shards to this new node, and we will then have two

nodes with three shards each. Regardless of the number

of shards in an index or the number of nodes they

occupy, an index is always seen to a client as a single

entity and traditional RDBMSs differ in many ways, at

the higher-level many of the core concepts of Elastic

have analogues in the RDBMS world (Table 1). All data

in Elastic is stored in indices. An index in Elastic is like

a database in a RDBMS: it can store different types of

documents, update them, and search for them. Each

document in Elastic is a JSON object, analogous to a

row in a table in a RDBMS. A document consists of zero

or more fields, where each field is either a primitive type

or a more complex structure. A document has a

Document type associated with it; however, all

documents in Elastic are schema-free, which means that

two documents of the same type can have different sets

of fields. Document type here is similar to the RDBMS

notion of a table: it defines the set of fields that can be

specified for a particular document.

Table 1: Elastic vs. SQL

Elastic element SQL element

Index Database

Mapping Schema

Document type Table

Elastic is based on Apache Lucene; each Elastic index

consists of one or more Lucene indices, called shards.

The number of shards that each index has is a fixed

value that is defined before the index can be created.

When a document is added to an index, the Elastic

server defines the shard that will be responsible for

storing and indexing that document. By doing this,

Elastic balances the loads between available shards and

also improves overall performance, since all shards can

be used simultaneously. While such automatic sharding

is only one key part of the distributed nature of Elastic,

the other part of it is automatic distribution of shards

among the nodes in a cluster. For example, imagine we

have an index that consists of six shards and that our

cluster has only one node. In this case, all six shards will

be on the same node; however, if we add one more node

to the cluster, Elastic will automatically move half of the

shards to this new node, and we will then have two

nodes with three shards each. Regardless of the number

of shards in an index or the number of nodes they

occupy, an index is always seen to a client as a single

entity.

3. Near Real-Time Search

The search in Elastic is near real-time. It means that

although documents are indexed immediately after they

are successfully added to an index, they will not appear

in the search results until the index is refreshed. The

Elastic server does not refresh indices after each update,

instead it uses a specified fixed time interval (the default

value is 1 second) to perform this operation. Since

refreshing is costly in terms of disk I/O, it might affect

the speed of adding new documents. Therefore, if you

need to perform a large number of updates at once, you

might want to temporally increase the default indexing

interval value (or even disable auto-refresh) and then

manually refresh indices after updates are completed.

4. Performing a Search

Elastic provides its own query language based on JSON

called Query DSL. A given search can be performed in

Elastic in two ways: in a form of a query or in a form of

a filter. The main difference between them is that a

query calculates and assigns each returned document

with the relevance score, while a filter does not. For this

reason, searching via filters is faster than via queries.

The official documentation recommends using queries

only in two situations: for full text searches or when the

relevance of each result in the search is important. For

simplicity, we will use term query to describe both

queries and filters; however, our experience with Elastic

is limited to working only with filters, thus we do not

report about use of queries. To execute a search, a client

sends a search request to one of the following addresses:

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

319

h t tp ://< s e r v e r >/ _s e a r c h

h t tp ://< s e r v e r >/ _s e a r c h

h t tp ://< s e r v e r >/ _s e a r c h

{ ‖query ‖: { ‖ f i l t e r e d ‖: {

‖query ‖: { ‖ m a t c h all ‖: { } } ,

 ‖ f i l t e r ‖: { ‖and ‖: [{

 ‖range ‖: {

 ‖m o d i f i e d t s ‖: {

 ‖ g t e ‖: 0 , ‖ l t ‖: 1 4 0 0 0 0 0 0 0 0 0 0 0} } } ,

{

‖term ‖: {

 ‖ r e p o r t e d b y ‖: ‖ XXXX ‖} } , {

 ‖terms ‖: {

 ‖ b u g s t a t u s ‖:

 [‖ new ‖ , ‖re opened ‖] } } , {‖not ‖: { ‖term ‖: { ‖

p r i o r i t y ‖: ‖ p1 ‖} } }] } } } , ‖from ‖: 0 , ‖ s i z e ‖:

1 0 0 , ‖ f i e l d s ‖: [‖ b u g i d ‖]

}

Figure 1: A sample search query using filters.

The first URL represents a search on all indices on the

server, while the last one searches only the documents of

a particular type withing a particular index. An example

of the search query using filters is shown in Figure 1. An

Elastic query is broadly similar to a SELECT query in

SQL. The filter field specifies the conditions that must

be met to return a document, similar to the WHERE

clause in a SQL query. Unlike SELECT in SQL, where

one must specify the list of tables to be joined before

filter conditions are applied, in Elastic the scope of the

search is restricted by the URL the query is sent to, and

queries are likely to differ only in their filter conditions.

Thus, such a query can serve as a boilerplate for a

variety of further queries: one need only put the required

conditions into the filter clause, and a new query is

ready to be executed. The fields from and size are used

for pagination (similar to LIMIT clause in MySQL) —

the former sets the first document to be returned, while

the latter sets the maximum number of documents in the

returned set. The field fields allows the selection of

specific fields of interest in the document to be returned.

If no fields are listed, the query performs similar to

SELECT * FROM and results in all fields of the

document being returned. As the data is sent from the

server over HTTP in a text form, reducing the number of

fields will likely improve overall performance.

5. Strengths

Scalability. Before researchers can do anything with

Elastic, they need to decide where they want their data

to be stored. A relational database can be used for this;

however, all the data is typically stored in a single

database. As a result, the more data we store, the more

powerful server we need (vertical scaling). The server

can be pushed to its limits very quickly, and we would

need to start sharding our database and putting each

shard on different servers (horizontal scaling).

Unfortunately, it is not a trivial operation and to the best

of our knowledge none of the current relational database

provides this functionality outof-box. Elastic

automatically distributes shards of an index across the

nodes of a cluster and controls that they are loaded

equally. So if you expect to add more data in future and

want to accommodate the growth in data, Elastic is your

choice as it scales horizontally. Agility. Data can be

agile in terms of the number of updates or new records,

in terms of constantly changing structure of a logical

piece of information or document, or a combination of

both of them. Relational databases are good at

changing/adding data as long as the amount of data in a

database is not too large. The time needed to perform a

database maintenance (mainly recalculating indices)

increases with its size. Elastic can better handle agile

data because of a) each of the shards is being

indexed/refreshed independently, and b) indices are

constantly refreshed with fixed time interval, which

means that it is unlikely that a shard has accumulated a

lot of unrefreshed data. In the RDBMS world, a database

schema is fixed and known before the first record arrives.

If any updates might take place, the schema must be

changed and this must be propagated to the records that

are already in the database. If the database stores big

data, this process can be very slow. Additionally, if the

database is used in a domain where documents can have

a lot of optional fields, the database can end up having

large sparse tables that waste disk space for storing

NULLs. Elastic does not impose schema on the

documents in indices. If a new document is added to an

index and there is a new field in this document, Elastic

will automatically update the mapping. There is no need

to change already stored documents since they do not

have such a field. In addition, Elastic can automatically

alter the data type of a field if a value in a new document

requires a ―wider‖ type (e.g., changing integer to long).

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

320

Performance. Best practises of the relational databases

world dictate that each relational database must go

through the normalization process during the design

phase. By converting a database to a particular normal

form we decouple bulk data into several tables and

minimize the amount of redundant information. While

the normalization benefits the create, update, and

remove operations, it is likely to complicate the read

operations. Most SELECT statements hit more than one

table and they must be joined before the filtering

conditions are applied. Although every RDBMS handles

this operation as efficiently as it can, it is a time-

consuming process if the query involves complex

schemas. But since Elastic is document-oriented it does

not need to spent time on this preliminary step (i.e.,

gathering the data). Moreover, all shards within an index

are searching for the documents satisfying some filter

criteria concurrently, and after that results from all them

are combined and returned. While scalability and

schema-free documents are common for NoSQL

systems, the combination of all three (scalability, agility,

and performance) in one system is what makes Elastic

stand out from other systems.

6. Weaknesses

Learning curve. The JSON origin of the Elastic query

language makes it really easy to start writing simple

queries. However, query writing becomes more

complicated if it involves nested objects. There is a

special type of queries, nested queries, in Elastic that

must be used when one of the filter conditions is a

condition on a field from a nested object. The use of

such queries requires the understanding of how

particular documents are stored and analyzed by Elastic

(i.e., the mapping that is currently in use).

Finally, Elastic inherits some weaknesses of being a

NoSQL system — lack of transactions, lack of JOIN

operation, possible inconsistencies in data, etc.

III. RESULTS AND DISCUSSION

APPLICATIONS

In this section we provide a concrete example of the

system that uses Elastic. We also speculate about the

boundaries of a domain where Elastic should be chosen

over other systems.

7.1 Software Analytics

Elastic is best suited for the applications that are built to

handle real time data that needs to be processed and

analyzed in a rapid manner. Such applications include

software analytics. As an example of software analytics

applications, ―Captome‖ implements the Elastic to do its

quantitative and intutive analysis search.

CaptoMe is a comprehensive NextGen Research

Discovery platform that enables researchers, consultants,

clinical trial planners and biomedical professionals to

easily combine biomedical content with a set of tools for

information management and results reporting.

Captome created two indices on their own servers: one

for research documents and one for Clinical trials

documents. Each index contained 50 millions of

documents.

Moving to the Elastic server and being able to execute

real time search on the issue repository improved the

performance of our tool being very crucial for Captome

to be useful to the researchers in biomedical companies.

We noticed a big improvement in the execution time, the

average response time of querying and displaying the

information on the web site was reduced from 30

seconds (using MySql servers) to 1.5 seconds (on Elastic

servers). The response time of a larger is now 2.5

seconds compared to the previous 2.5 minutes.

7. Other Applications

Elastic is a good choice if you expect to perform any

real-time analysis of the data such as as social media

analysis, or if you need to provide real-time search that

scales to terabytes of information. Thousands

organizations worldwide including Netflix, Facebook,

GitHub and Stack Overflow, have adopted Elastic to

help them overcome limitations of their old approaches

in handling new demands of agile data processing and

storage. For example, for McGraw-Hill Education Labs,

Elastic has provided scalability and high performance to

their personalized student learning system. For Xing,

Europe’s largest professional social network, Elastic

brings the ability to handle one million updates per day

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

321

in real-time and search performance to support 6 million

queries per day. With Elastic we can answer a wide

range of questions, from the aggregated information to a

fine grained data pieces. We believe that in time current

MSR like techniques, in particular, creating traditional

offline databases, loading data and use database

querying tools, will be replaced by setting up Elastic

clusters, writing and performing ETL (execute,

transform and load) jobs and performing real-time large

data analysis using Elastic search functionality. While

Elastic is currently adopted by industrial organizations

(mainly due to high costs of hardware and experts),

research community is also evolving and exploring

solutions such as Elastic or Hadoop to be able to mine

modern data repositories.

IV. CONCLUSION

Elastic is an easily scalable, full-text search engine that

is capable of handling large amounts of online and

schema-less data. We built a tool called Captome that

allows researchers, consultants, clinical trial planners

and biomedical professionals to easily search and

analysis process. By switching to Elastic, Captome

remarkably improved their performance which rendered

the tool suitable for the real-time use.

V. REFERENCES

[1]. Baysal, R. Holmes, and M. W. Godfrey.

Developer dashboards: The need for qualitative

analytics. IEEE Software, 30(4):46–52, 2013.

[2]. Sematext. Elastic refresh interval vs indexing

performance. http://bit.ly/1iZoPGc, July 2013.

[3]. Hao Zhang , Gang Chen‖In Memory Pattern

Mining Data‖in IEEE Transactions on Knowledge

and Data Engineering Volume: 27, Issue: 7, July

1 2015.

[4]. Ge song, Justine Rochas―K Nearest Neighbour

Joins For Bigdata On Map Reduce‖ in IEEE

Transactions on Knowledge and Data Engineering

Volume: 28, Issue:9, Sep 1 2016.

[5]. Ling Chen ,Xue LI ―Mining Health Examination

Records-A Graph Based Approach‖ in IEEE

Transactions on Knowledge and Data Engineering

Volume: 28, Issue:9, Sep 1 2016.

