International Journal of Scientific Research in Science and Technology Print ISSN: 2395-6011 | Online ISSN: 2395-602X (www.ijsrst.com)

doi: https://doi.org/10.32628/IJSRST

On A Special Type of Operator, Called λ-Jection of Third Order

Dr. Rajiv Kumar Mishra

Associate Professor, Department of Mathematics, Rajendra College, J.P. University, Chapra,

PIN - 841301, Bihar, India

E-mail - dr.rkm65@gmail.com

Article Info ABSTRACT

January-February-2018

Page Number: 2321-2328

Publication Issue Volume 4, Issue 2

Article History

Received: 15 Nov 2017

Accepted: 10 Dec 2017 Published: 25 Jan 2018 In this paper, an operator called λ -jection or λ -jection of third order has

been considered. I investigate forms of an operator E in \mathbb{R}^2 which satisfy

conditions of λ -jection.

Keywords : λ -Jection, Projection, Trijection.

I. INTRODUCTION

Dr. P Chandra defined a trijection operator in his Ph.D. thesis titled "Investigation into the theory of operators and linear spaces". [1] In Dunford N. and Schwartz J. [2], p.37 and Rudin [3], p.126 a projection operator E has been defined as $E^2 = E$. In analogue to this, E has been defined a trijection operator if $E^3 = E$, which is a generalisation of projection operator.

I. Definition

Let L be a linear space and E a linear operator on L. We define E to be a λ -jection of third order or simply a λ -jection if

$$E^3 + \lambda E^2 = (1 + \lambda)E$$
, λ being a scalar

In case λ =0, we have $E^3 = E$ i.e. E is a trijection. In case of a projection i.e. E is a trijection. In case of a projection i.e. $E^2 = E$, this condition is also satisfied i.e.- it is a λ -jection too.

II. Main Results

We investigate when an operator E on \mathbb{R}^2 happens to be a λ -jection.

Theorem 1

Let E be an operator defined on R^2 by

$$E(x,y) = (ax + by, cx + dy)$$
 with a,b,c,d in R.

We find out conditions when E is a λ -jection.

Proof:-

We have

$$E^{2}(x,y) = E(E(x,y)) = E(ax + by, cx + dy)$$

$$= (a(ax + by) + b(cx + dy), c(ax + by) + d(cx + dy))$$

$$= ((a^{2} + bc)x + b(a + d)y, c(a + d)x + (bc + d^{2})y)$$

$$= (Ax + By, Cx + Dy), say$$

$$where A = a^{2} + bc, B = b(a + d), C = c(a + d), D = bc + d^{2}$$

$$Let ad - bc = m \text{ and } a + d = n$$

$$Then d = n - a, Hence \ a(n - a) - bc = m$$

$$an - a^{2} - bc = m$$

$$So, A = a^{2} + bc = an - m \text{ and } bc = an - m - a^{2}$$

$$Now \ B = b(a + d) = bn, C = c(a + d) = cn$$

$$D = bc + d^{2} = an - m - a^{2} + (n - a)^{2}$$

$$= an - m - a^{2} + n^{2} + a^{2} - 2an = n^{2} - an - m$$

$$Now$$

$$E^{3}(x, y) = E(E^{2}(x, y)) = E(Ax + By, Cx + Dy)$$

$$= (a(Ax + By) + b(Cx + Dy), c(Ax + by) + d(Cx + Dy))$$

$$= (aA + bC)x + (aB + bD)y, (cA + dC)x + (cB + dD)y)$$

$$= (A_{1}x + B_{1}y, C_{1}x + D_{1}y), say$$

$$Then A_{1} = aA + bC = a(an - m) + bcn = a^{2}n - am + n(an - a^{2} - m)$$

$$= an^{2} - mn - am$$

$$B_{1} = aB + bD = abn + b(n^{2} - an - m) = b(n^{2} - m)$$

$$C_{1} = cA + dC = c(an - m) + (n - a)cn = c(n^{2} - m)$$

$$D_{1} = cB + dD = cbn + (n - a)(n^{2} - an - m)$$

We substitute these values in

$$E^{3}(x, y) + \lambda E^{2}(x, y) = (1 + \lambda)E(x, y)$$

We get

$$(A_1x + B_1y, C_1x + D_1y) + \lambda(Ax + By, Cx + Dy) = (1 + \lambda)(ax + by, cx + dy)$$

Equating co-efficients of x,y in both coordinates

 $= n^3 - an^2 - 2mn + am$

 $= (an - m - a^2)n + n^3 - an^2 - mn - an^2 + a^2n + am$

$$A_1 + \lambda A = \alpha(1 + \lambda), B_1 + \lambda B = b(1 + \lambda)$$

$$C_1 + \lambda C = c(1 + \lambda), D_1 + \lambda D = d(1 + \lambda)$$

Now $A_1 + \lambda A = a(1 + \lambda)$

$$\Rightarrow an^2 - mn - am + \lambda(an - m) = a + a\lambda$$

$$\Rightarrow an^2 - mn - am + \lambda an - \lambda m - a - a\lambda = 0$$

$$B_1 + \lambda B = b(1 + \lambda)$$

$$\Rightarrow b(n^2 - m) + \lambda bn = b(1 + \lambda)$$

$$\Rightarrow n^2 - m + \lambda n = 1 + \lambda$$
, assuming $b \neq 0$

$$\Rightarrow n^2 - m = 1 + \lambda - \lambda n$$

$$C_1 + \lambda C = c(1 + \lambda)$$

-----(4)

$$\Rightarrow c(n^2 - m) + \lambda cn = c(1 + \lambda)$$

$$\Rightarrow n^2 - m + \lambda n = 1 + \lambda$$
, assuming $c \neq 0$

$$\Rightarrow n^2 - m = 1 + \lambda - \lambda n$$
, which is same as (2)

$$D_1 + \lambda D = d(1 + \lambda)$$

$$\Rightarrow n^3 - an^2 - 2mn + am + \lambda(n^2 - an - m) = (1 + \lambda)(n - a)$$

$$\Rightarrow n^3 - an^2 - 2mn + am + \lambda n^2 - a\lambda n - \lambda m) = n(1 + \lambda) - a - a\lambda$$

$$\Rightarrow n^3 - a(n^2 - m) - 2mn + \lambda(n^2 - m) - a\lambda n = n + n\lambda - a - a\lambda \qquad -----(3)$$

(1) Can be put in form,

$$a(n^2 - m) - mn + \lambda an - \lambda m - a - a\lambda = 0$$

Using (2), we get

$$a(1 + \lambda - \lambda n) - mn + \lambda an - \lambda m - a - a\lambda = 0$$

$$\Rightarrow -mn - \lambda m = 0$$

$$\Rightarrow mn + \lambda m = 0$$

$$\Rightarrow m(n + \lambda) = 0$$

$$\Rightarrow m = 0 \text{ or } n = -\lambda$$

Using (2) in relation (3), we get

$$n^3 - a(1 + \lambda - \lambda n) - 2mn + \lambda(1 + \lambda - \lambda n) - a\lambda n = n + \lambda n - a - a\lambda$$

$$n^3 - a - a\lambda + a\lambda n - 2mn + \lambda + \lambda^2 - \lambda^2 n - a\lambda n = n + \lambda n - a - a\lambda$$

From (4), let m=0 and put in (5), then we get

$$n^3 + \lambda + \lambda^2 - \lambda^2 n - n - \lambda n = 0$$

$$\Rightarrow n^3 - n(1 + \lambda + \lambda^2) + \lambda + \lambda^2 = 0$$

This is a cubic in n and roots are easily found to be 1, λ and $-(1+\lambda)$

Hence when m=0, n=1, λ , –(1+ λ)

From (4), let $n = -\lambda$, then due to (5),

$$-\lambda^{3} + 2m\lambda + \lambda + \lambda^{2} + \lambda^{3} + \lambda + \lambda^{2} = 0$$

$$\Rightarrow 2m\lambda + 2\lambda + 2\lambda^{2} = 0$$

Dr. Rajiv Kumar Mishra Int J Sci Res Sci & Technol. January-February-2018, 4 (2): 2321-2328

$$\Rightarrow m\lambda + \lambda + \lambda^2 = 0$$

$$\Rightarrow \lambda(m+1+\lambda) = 0$$

$$\lambda = 0 \text{ or } \lambda = -(m+1), i.e. m = -(1+\lambda)$$

If we choose $\lambda = 0$ then n = 0 (Due to 4)

Due to (2), -m = 1 or m = -1

So, we have the case m = -1, n=0

Otherwise, we get the case when $m = -(1+\lambda)$ and $n = -\lambda$

Thus finally we see that (m,n) takes values (0,1), $(0,\lambda)$, $(0,-(1+\lambda))$, (-1,0) and $(-(1+\lambda),-\lambda)$

So, when E is a λ -jection, we have the above possibilities.

Theorem 2

Let m=0, n=1, then

$$E(x,y) = (ax + by, cx + (1 - a)y)$$
 where $bc = a - a^2$
Also $E^2 = E$ so E is a projection

Proof:-

Due to (2), $n^2 - m = 1 + \lambda - \lambda n$

 \Rightarrow 1 = 1 + λ - λ which is true for all values of λ

Also $m = 0 \Rightarrow ad = bc$

$$n = 1 \Rightarrow a + d = 1 \Rightarrow d = 1 - a$$

Hence $ad = bc \Rightarrow a(1 - a) = bc \Rightarrow a = a^2 + bc = A$

Also, B = bn = b, C = cn = c

$$D = n^2 - an - m = 1 - a = d$$

So, in this case,

$$E(x, y) = (ax + by, cx + (1 - a)y)$$
 where $bc = a - a^2$

Also,
$$E^{2}(x, y) = (Ax + By, Cx + Dy) = (ax + by, cx + dy) = E(x, y)$$

Hence $E^2 = E$, So E is a projection.

Theorem 3

Let m=0 and n= λ . Then λ has two values 1 and -1/2

When $\lambda = 1$, we have case as in theorem 2, when $\lambda = -1/2$

Then,

$$E(x,y) = (ax + by, cx + (-\frac{1}{2} - a)y)$$

where $bc = -\frac{1}{2}a - a^2$

Also in this case, $E^2 = -\frac{1}{2}E$

Proof:

Let m=0, n= λ

Due to (2), $\lambda^2 = 1 + \lambda - \lambda^2$

Dr. Rajiv Kumar Mishra Int J Sci Res Sci & Technol. January-February-2018, 4 (2): 2321-2328

$$\Rightarrow 2\lambda^2 - \lambda - 1 = 0$$
$$\Rightarrow \lambda = 1 \text{ or } -\frac{1}{2}$$

So, consider m=0, n=1

We have already considered this case in theorem 2 and E is a projection.

Now consider the case $m = 0, n = \lambda = -\frac{1}{2}$

Then
$$a + d = -\frac{1}{2} \Rightarrow d = -\frac{1}{2} - a$$
 (: $n = a + d$)

So
$$ad = bc \Rightarrow a(-\frac{1}{2} - a) = bc$$
 (: $m = ad - bc = 0$)

$$\Rightarrow A = a^{2} + bc = -\frac{1}{2}a$$

$$B = bn = -\frac{1}{2}b, C = cn = -\frac{1}{2}c$$

$$D = n^{2} - an - m = n^{2} - an = n(n - a) = -\frac{1}{2}(-\frac{1}{2} - a) = -\frac{1}{2}d$$

Hence in this case,

$$E(x,y) = (ax + by, cx + (-\frac{1}{2} - a)y)$$

where
$$bc = -\frac{1}{2}a - a^2$$

Also,
$$E^2(x, y) = (Ax + By, Cx + Dy) = (-\frac{1}{2}ax - \frac{1}{2}by, -\frac{1}{2}cx - \frac{1}{2}dy)$$

$$= -\frac{1}{2}(ax + by, cx + dy) = -\frac{1}{2}E(x, y)$$

Hence, in this case, $E^2 = -\frac{1}{2}E$

Theorem 4

Let m = 0, $n = -(\lambda + 1)$ In this case,

$$E(x,y) = (ax + by, cx - (a + 1 + \lambda)y)$$

where $bc = -a(1 + \lambda) - a^2$

Also,
$$E^2 = -(\lambda + 1)E$$

Proof:-

Due to (2),

$$(\lambda + 1)^2 = 1 + \lambda + \lambda(1 + \lambda) = 1 + 2\lambda + \lambda^2$$

Which is true for all values of λ . Here $a + d = -(\lambda + 1)$

Now
$$bc = an - m - a^2 = -a(\lambda + 1) - a^2$$

$$A = a^{2} + bc = -a(\lambda + 1)$$

$$B = bn = -b(\lambda + 1)$$

$$C = cn = -c(\lambda + 1)$$

$$D = n^{2} - an - m = n(n - a) = nd = -d(\lambda + 1)$$

So in this case,

Dr. Rajiv Kumar Mishra Int J Sci Res Sci & Technol. January-February-2018, 4 (2): 2321-2328

$$E(x,y) = (ax + by, cx - (a + 1 + \lambda)y)$$

where $bc = -a(1 + \lambda) - a^2$

$$E^{2}(x,y) = (Ax + By, Cx + Dy)$$

$$= (-a(\lambda + 1)x - b(\lambda + 1)y, -c(\lambda + 1)x - d(\lambda + 1)y)$$

$$= -(\lambda + 1)(ax + by, cx + dy)$$

$$= -(\lambda + 1)E(x,y)$$

Hence in this case,

$$E^2 = -(\lambda + 1)E$$

Corollary

If m=0, n=0 then

$$E(x,y) = (ax + by, cx - ay)$$

where, $bc = -a^2$ and $E^2 = 0$

Proof:

In above theorem put $\lambda = -1$

Theorem 5

Let m = -1 and n=0. In this case

$$E(x,y) = (ax + by, cx - ay)$$
, where $bc = 1 - a^2$

Moreover, $E^2 = I$ Identity Operator

Proof:-

Since n=0, a+d=0. Hence d=-a

$$m = -1 \Rightarrow ad - bc = -1$$

$$\Rightarrow a(-a) - bc = -1$$

$$\Rightarrow A = a^{2} + bc = 1$$

$$Also, B = bn = 0, C = cn = 0$$

$$D = bc + d^{2} = bc + (-a)^{2} = a^{2} + bc = 1$$

Hence E(x, y) = (ax + by, cx + dy)

where
$$bc = 1 - a^2$$

And
$$E^{2}(x, y) = (Ax + By, Cx + Dy) = (x, y) = I(x, y)$$

Thus $E^2 = I$

Theorem 6

Let
$$m = -(1 + \lambda)$$
 and $n = -\lambda$

Then
$$E(x, y) = (ax + by, cx - (a + \lambda)y)$$

Where
$$bc = 1 + \lambda - a\lambda - a^2$$

And
$$E^2 = -\lambda E + (1 + \lambda)I$$

Proof:-

Due to (2),

$$\lambda^2 + 1 + \lambda = 1 + \lambda - \lambda(-\lambda)$$
 which is true for any λ

Now
$$n = -\lambda \Rightarrow a + d = -\lambda$$

$$\Rightarrow d = -\lambda - a$$

Also m = ad - bc

$$\Rightarrow -(1+\lambda) = a(-\lambda - a) - bc$$
$$\Rightarrow bc = (1+\lambda) - a\lambda - a^2$$

Hence E(x, y) = (ax + by, cx + dy)

where
$$bc = (1 + \lambda) - a\lambda - a^2$$

Also,
$$A = a^2 + bc = (1 + \lambda) - a\lambda = an - m$$

$$B = bn$$

$$C = cn$$

$$D = n^2 - an - m = n(n - a) - m = nd - m$$

So
$$E^2(x,y) = ((an - m)x + bny, cnx + (nd - m)y)$$

$$= (anx + bny, cnx + dny) - (mx, my)$$

$$= n(ax + by, cx + dy) - m(x, y)$$

$$= nE(x,y) - mI(x,y)$$

Hence
$$E^2 = nE - mI = -\lambda E + (1 + \lambda)I$$

We see that above equation multiplied by E gives

$$E^3 = -\lambda E^2 + (1 + \lambda)E$$

which is true

Theorem 7

In case b = c = 0,

$$E(x, y) = (ax, dy)$$
 with $bc = 0$

Also, a and d takes values in the set $\{0,1,-(\lambda+1)\}$

This gives 9 possibilities for E(x,y)

Proof:-

Since
$$b = c = 0$$
, $E(x,y) = (ax,dy)$

Hence
$$E^2(x, y) = (a^2x, d^2y), E^3(x, y) = (a^3x, d^3y)$$

Substituting in condition for λ -jection

$$(a^3x, d^3y) + \lambda(a^2x, d^2y) = (1+\lambda)(ax, dy)$$

$$\Rightarrow (a^3x + \lambda a^2x, d^3y + \lambda d^2y) = ((1+\lambda)ax, (1+\lambda)dy)$$

Comparing coefficients of x,y

$$a^3 + \lambda a^2 = (1 + \lambda)a$$

And
$$d^3 + \lambda d^2 = (1 + \lambda)d$$

Now $a^3 + \lambda a^2 - (1 + \lambda)a = 0$

$$\Rightarrow a[a^2 + \lambda a - (1 + \lambda)] = 0$$

$$\Rightarrow a(a - 1)(a + 1 + \lambda) = 0$$

$$a = 0, 1, -(\lambda + 1)$$

Similarly, $d = 0,1, -(\lambda + 1)$

Thus, a and d takes values in the set $\{0,1, -(\lambda+1)\}$

So we have nine possibilities for E(x,y). These are given by

$$E(x,y) = (0,0)$$
 where $a = d = 0$. Thus E is 0 operator.
 $E(x,y) = (0,y)$ where $a = 0, d = 1$. This is a projection.
 $E(x,y) = (0,-(\lambda+1)y)$ when $a = 0, d = -(\lambda+1)$
Similarly $E(x,y) = (x,0)$ which is a projection.
 $E(x,y) = (x,y)$ i. e. $-E = I$
 $E(x,y) = (x,-(\lambda+1)y)$
 $E(x,y) = (-(\lambda+1)x,0)$
 $E(x,y) = (-(\lambda+1)x,y)$
 $E(x,y) = (-(\lambda+1)x,y)$

REFERENCES

- [1] Chandra, P. "Investigation into the theory of operators and linear spaces" Ph.D. Thesis, Patna University, 1977
- [2] Dunford, N. and Schwartz, J. "Linear operators, Part I", Interscience Publishers, Inc., New York, 1967, p.37
- [3] Rudin, W. "Functional Analysis", Mc-Graw-Hill Book Company, inc., new york, 1973, p.126.

Cite this Article

Dr. Rajiv Kumar Mishra, "On A Special Type of Operator, Called ?-Jection of Third Order", International Journal of Scientific Research in Science and Technology (IJSRST), Online ISSN: 2395-602X, Print ISSN: 2395-6011, Volume 4 Issue 2, pp. 2321-2328, January-February 2018.

Journal URL: https://ijsrst.com/IJSRST229411351