Spectral Resolution of a Special Type of Operator, Called λ-Jection of Third Order

Dr. Rajiv Kumar Mishra

Associate Professor, Department of Mathematics, Rajendra College, J.P. University, Chapra,
PIN - 841301, Bihar, India
E-mail - dr.rkm65@gmail.com

Article Info

January-February-2019
Page Number: 750-755
Publication Issue
Volume 6, Issue 1
Article History
Received : 15 Nov 2018
Accepted : 20 Dec 2018
Published : 10 Jan 2019

Abstract

In this paper, I consider an operator called λ-jection or a λ-jection of third order and obtain its spectral resolution.

Keywords : 入-Jection, Projection, Spectrum, Spectral Resolution

I. INTRODUCTION

Dr. P Chandra defined a trijection operator in his Ph.D. thesis titled "Investigation into the theory of operators and linear spaces".[1] In Dunford, N. and Schwartz, J. [2], p. 37 and Rudin [3], p. 126 a projection operator E has been defined as $E^{2}=E$. E is a trijection operator if $E^{3}=E$. To generalise it, I have defined E to be a λ-jection (of third order) [5] if

$$
E^{3}+\lambda E^{2}=(1+\lambda) E, \quad \lambda \text { being a scalar } .
$$

In case $\lambda=0$, we have a trijection. In case E is a projection, it is also a λ-jection.

II. Definition

Let H be a Hilbert space and E an operator on H . Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}$ be eigen values of E and $M_{1}, M_{2}, \ldots, M_{m}$ be their corresponding eigen spaces. Let $P_{1}, P_{2}, \ldots, P_{m}$ be the projections on these eigen spaces. Then according to definition of spectral theorem in Simmons [4], p 279-290, the following statements are all equivalent to one another.

1. The $M_{i}{ }^{\prime} s$ are pairwise orthogonal and span H.
2. The P_{i}^{\prime} 's are pairwise orthogonal, $I=\sum_{i=1}^{m} P_{i}$ and $E=\sum_{i=1}^{m} \lambda_{i} P_{i}$
3. E is normal.
4. Then the set of eigen values of E is called its spectrum and is denoted by $\sigma(E)$. Also

$$
E=\lambda_{1} P_{1}+\lambda_{2} P_{2}+\ldots+\lambda_{m} P_{m}
$$

Expression for E given above is called the spectral resolution of E .

III. Main Result

Theorem 1

Let E be a λ-jection on a Hilbert space H. Assume $\lambda \neq-1$ or -2 . Then E can be expressed as a linear combination of two pairwise orthogonal projections.

Proof:-

E is a λ-jection if
$E^{3}+\lambda E^{2}=(1+\lambda) E$
Let, $\lambda+1=\mu$ or $\lambda=\mu-1$, then
$E^{3}+(\mu-1) E^{2}=\mu E$
$\Rightarrow E^{3}-E^{2}=\mu E-\mu E^{2}=\mu\left(E-E^{2}\right)$
$\Rightarrow E^{3}=\mu\left(E-E^{2}\right)+E^{2}=\mu E-(\mu-1) E^{2}$
Applying E to both sides,
$E^{4}=\mu E^{2}-(\mu-1) E^{3}=\mu E^{2}-(\mu-1)\left\{\mu E-(\mu-1) E^{2}\right\}$
$=\mu E^{2}-\mu(\mu-1) E+(\mu-1)^{2} E^{2}$
$=-\left(\mu^{2}-\mu\right) E+\left\{\mu+(\mu-1)^{2}\right\} E^{2}$
$=\left(\mu-\mu^{2}\right) E+\left(1-\mu+\mu^{2}\right) E^{2}$

Let E can be expressed as
$E=a P_{1}+b P_{2}$
Where a and b are scalars, P_{1}, P_{2} pairwise orthogonal projections i.e.-
$P_{1}^{2}=P_{1}, P_{2}^{2}=P_{2}, P_{1} P_{2}=0$
Hence squaring E,
$E^{2}=a^{2} P_{1}+b^{2} P_{2}$
Solving (3) and (4) for P_{1} and P_{2} in terms of E and E^{2},
$P_{1}=\frac{E^{2}-b E}{a(a-b)}, P_{2}=\frac{a E-E^{2}}{b(a-b)}$
Since $P_{1} P_{2}=0$,
$\frac{E^{2}-b E}{a(a-b)} * \frac{a E-E^{2}}{b(a-b)}=0$
$\Rightarrow\left(E^{2}-b E\right) *\left(a E-E^{2}\right)=0$
$\Rightarrow a E^{3}-E^{4}-a b E^{2}+b E^{3}=0$
$\Rightarrow(a+b) E^{3}-E^{4}-a b E^{2}=0$
$\Rightarrow(a+b)\left[\mu E-(\mu-1) E^{2}\right]-\left[\left(\mu-\mu^{2}\right) E+\left(1-\mu+\mu^{2}\right) E^{2}\right]-a b E^{2}=0$ using (1) and (2)
Equating coefficients of E on both sides,
$\mu(a+b)-\left(\mu-\mu^{2}\right)=0$
Since $\mu \neq 0$ as $\lambda \neq-1$,
$(a+b)-(1-\mu)=0 \Rightarrow a+b=1-\mu$
Equating coefficients of E^{2} on both sides,
$-(a+b)(\mu-1)-\left(1-\mu+\mu^{2}\right)-a b=0$
Using (6),
$(1-\mu)^{2}-\left(1-\mu+\mu^{2}\right)=a b$
$\Rightarrow a b=1-2 \mu+\mu^{2}-1+\mu-\mu^{2}=-\mu$
Hence $(a-b)^{2}=(a+b)^{2}-4 a b=(1-\mu)^{2}+4 \mu=(1+\mu)^{2}$
So $a-b= \pm(1+\mu)$
Let $a-b=1+\mu$.Also $a+b=1-\mu$
Hence $a=1, b=-\mu$
Therefore $P_{1}=\frac{E^{2}-b E}{a(a-b)}=\frac{E^{2}+\mu E}{1+\mu} \quad(\mu \neq-1$ as $\lambda \neq-2)$
And $P_{2}=\frac{a E-E^{2}}{b(a-b)}=\frac{E-E^{2}}{-\mu(1+\mu)}=\frac{E^{2}-E}{\mu(1+\mu)}$
If we consider $a-b=-(1+\mu)$, we get same values of P_{1} and P_{2}
Hence $E=P_{1}-\mu P_{2}$
Thus we have expressed E as a linear combination of two pairwise orthogonal projections.

Theorem 2

Let E be a λ-jection on Hilbert space H. There are three pairwise orthogonal projections P_{1}, P_{2}, P_{3} such that $E=\lambda_{1} P_{1}+\lambda_{2} P_{2}+\lambda_{3} P_{3}$
Where $\lambda_{1}, \lambda_{2} \lambda_{3}$ are scalars and
$I=P_{1}+P_{2}+P_{3}$

Proof:-

We have seen in theorem 1 that
$E=P_{1}-\mu P_{2}$
Where P_{1}, P_{2} are orthogonal projections.
Let $Q=P_{1}+P_{2}$
Then $Q^{2}=P_{1}^{2}+P_{2}^{2}+2 P_{1} P_{2}=P_{1}+P_{2}$
So Q is also a projection. Hence $I-Q$ is also a projection.
Let $P_{3}=I-Q=I-P_{1}-P_{2}$
Then P_{3} is a projection such that
$P_{1} P_{3}=P_{1}\left(I-P_{1}-P_{2}\right)=P_{1}-P_{1}^{2}-P_{1} P_{2}=0$
$P_{2} P_{3}=P_{2}\left(I-P_{1}-P_{2}\right)=P_{2}-P_{2}^{2}-P_{1} P_{2}=0$
Thus P_{1}, P_{2}, P_{3} are pairwise orthogonal.
Moreover, $P_{1}+P_{2}+P_{3}=P_{1}+P_{2}+I-P_{1}-P_{2}=I$
Choose $\lambda_{1}=1, \lambda_{2}=-\mu$, and $\lambda_{3}=0$
Then $E=P_{1}-\mu P_{2}=P_{1}-\mu P_{2}+0 * P_{3}=\lambda_{1} P_{1}+\lambda_{2} P_{2}+\lambda_{3} P_{3}$
Where $\lambda_{1}=1, \lambda_{2}=-\mu$ and $\lambda_{3}=0$

Theorem 3

Range of projection P_{1} denoted by $R_{P_{1}}$ is given by
$R_{P_{1}}=\{z: E z=z\}=M_{1}$ (say)

Proof :

Let $z \in R_{P}$, then since P_{1} is a projection, $P_{1} z=z$

Now $E P_{1}=\frac{E\left(E^{2}+\mu E\right)}{\mu+1}=\frac{E^{3}+\mu E^{2}}{\mu+1}=\frac{\mu E+(1-\mu) E^{2}+\mu E^{2}}{\mu+1}=\frac{\mu E+E^{2}}{\mu+1}=P_{1}$
Hence $E z=E\left(P_{1} z\right)=E P_{1} z=P_{1} z=z$
So $z \in M_{1}$
Hence $R_{P_{1}} \subseteq M_{1}$
Conversely, let $z \in M_{1}$, i.e. $E z=z$
Then $E^{2} z=E(E z)=E z=z$
So $P_{1} z=\frac{\left(E^{2}+\mu E\right)}{\mu+1} Z=\frac{E^{2} z+\mu E z}{\mu+1}=\frac{z+\mu z}{\mu+1}=\frac{(1+\mu) z}{\mu+1}=z$
Thus $z \in R_{P_{1}}$
So $M_{1} \subseteq R_{P_{1}}$
From (7) and (8)
$R_{P_{1}}=M_{1}$

Theorem 4

We show that
$R_{P_{2}}=\{z: E z=-\mu z\}=M_{2}(s a y)$

Proof:-

Let $Z \in R_{P_{2}}$ then $P_{2} Z=Z$
Now $E P_{2}=\frac{E\left(E^{2}-E\right)}{\mu(\mu+1)}=\frac{E^{3}-E^{2}}{\mu(\mu+1)}=\frac{\mu\left(E-E^{2}\right)}{\mu(\mu+1)}=\frac{-\mu\left(E^{2}-E\right)}{\mu(\mu+1)}=-\mu P_{2}$
So $E z=E\left(P_{2} z\right)=E P_{2} z=\left(-\mu P_{2}\right) z=-\mu z$
$\Rightarrow z \in M_{2}$
Hence $R_{P_{2}} \subseteq M_{2}$

Conversely, let $z \in M_{2}$, then $E z=-\mu z$
Then $E^{2} z=E(E z)=E(-\mu z)=-\mu E z=\mu^{2} z$
Hence $P_{2} Z=\frac{\left(E^{2}-E\right)}{\mu(\mu+1)} z=\frac{\mu^{2} z+\mu z}{\mu^{2}+\mu}=z$
So $z \in R_{P_{2}}$
Thus $M_{2} \subseteq R_{P_{2}}$
From (9) and (10),
$R_{P_{2}}=M_{2}$

Theorem 5

We show that
$R_{P_{3}}=\{z: E z=0\}=M_{3}(s a y)$

Proof:-

We have
$P_{3}=I-P_{1}-P_{2}$
Let $z \in R_{P_{3}}$ then $P_{3} z=z$
Now $E P_{3}=E\left(I-P_{1}-P_{2}\right)=E-E P_{1}-E P_{2}$
$=E-P_{1}+\mu P_{2}=E-\left(P_{1}-\mu P_{2}\right)=E-E=0$
Using Theorems 1,3 and 4

So, $E z=E\left(P_{3} z\right)=E P_{3} z=0 z=0$
$\Rightarrow z \in M_{3}$
Hence $R_{P_{3}} \subseteq M_{3}$
Let $z \in M_{3}$, then $E z=0 \Rightarrow E^{2} z=0$
Then
$P_{1} z=\frac{\left(E^{2}+\mu E\right)}{\mu+1} z=\frac{E^{2} z+\mu E z}{\mu+1}=0$
$P_{2} z=\frac{\left(E^{2}-E\right)}{\mu(\mu+1)} z=\frac{E^{2} z-E z}{\mu(\mu+1)}=0$
Hence $P_{3} z=\left[I-P_{1}-P_{2}\right] z=z-0-0=z$
So $z \in R_{P_{3}}$
Hence $M_{3} \subseteq R_{P_{3}}$
From (11) and (12)
$R_{P_{3}}=M_{3}$

Theorem 6

Let E be a λ-jection on a Hilbert space H. Let $\lambda_{1}=1, \lambda_{2}=-\mu$ and $\lambda_{3}=0$ be eigen values of E. M_{1}, M_{2}, M_{3} be their corresponding eigen spaces. Let P_{1}, P_{2}, P_{3} be projections on these eigen spaces where
$P_{1}=\frac{E^{2}+(\lambda+1) E}{\lambda+2}, P_{2}=\frac{E^{2}-E}{(\lambda+1)(\lambda+2)}, P_{3}=I-P_{1}-P_{2}$
Then $P_{1}+P_{2}+P_{3}=I$
$P_{i}^{\prime} s$ are pairwise orthogonal and spectral resolution of E is given by (assuming $\lambda \neq-1$ or -2)
$E=\lambda_{1} P_{1}+\lambda_{2} P_{2}+\lambda_{3} P_{3}$
And spectrum of E is given by
$\sigma(E)=\{1,-(\lambda+1), 0\}$

Proof:-

Theorems $3,4,5$ show that $\lambda_{1}=1, \lambda_{2}=-\mu, \lambda_{3}=0$ are eigen values of E, M_{1}, M_{2}, M_{3} are their corresponding eigen spaces and P_{1}, P_{2}, P_{3} are pairwise orthogonal projections on these eigen spaces. Also due to theorem 2 ,
$E=\lambda_{1} P_{1}+\lambda_{2} P_{2}+\lambda_{3} P_{3}$,
$I=P_{1}+P_{2}+P_{3}$
Hence expression for E given above is the spectral resolution of E. Also the spectrum of E, since the eigen values of E are $1,-\mu$, and 0 is given by
$\sigma(E)=\{1,-(\lambda+1), 0\}$ as $\mu=\lambda+1$

IV. References

[1]. Chandra, P. "investigation into the theory of operators and linear spaces" Ph.D. thesis, Patna University, 1977
[2]. Dunford, N. and Schwartz, J. "linear operators part I", Interscience Publishers, Inc. New York, 1967, p. 37
[3]. Rudin, W., "Functional Analysis", McGraw-Hill Book Company, Inc., New york, 1973, P. 126
[4]. Simmons, G.F. "Introduction to topology and Modern Analysis", McGraw Hill Book Company, New York, 1963, pp,279-290
[5]. Mishra R K, "On A Special Type of Operator, Called λ-Jection of Third Order", International Journal of Scientific Research in Science and Technology (IJSRST), Online ISSN : 2395-602X, Print ISSN : 2395-6011, Volume 4 Issue 2, pp. 2321-2328, January-February 2018.

