International Journal of Scientific Research in Science and Technology Print ISSN: 2395-6011 | Online ISSN: 2395-602X (www.ijsrst.com)

doi: https://doi.org/10.32628/IJSRST

Spectral Resolution of a Special Type of Operator, Called λ -Jection of Third Order

Dr. Rajiv Kumar Mishra

Associate Professor, Department of Mathematics, Rajendra College, J.P. University, Chapra, PIN - 841301, Bihar, India E-mail - dr.rkm65@gmail.com

Article Info

ABSTRACT

January-February-2019

Page Number: 750-755

Publication Issue

Volume 6, Issue 1

Article History

Received: 15 Nov 2018 Accepted: 20 Dec 2018 Published: 10 Jan 2019 In this paper, I consider an operator called λ -jection or a λ -jection of third

order and obtain its spectral resolution.

Keywords: λ-Jection, Projection, Spectrum, Spectral Resolution

I. INTRODUCTION

Dr. P Chandra defined a trijection operator in his Ph.D. thesis titled "Investigation into the theory of operators and linear spaces".[1] In Dunford, N. and Schwartz, J. [2], p.37 and Rudin [3], p.126 a projection operator E has been defined as $E^2 = E$. E is a trijection operator if $E^3 = E$. To generalise it, I have defined E to be a λ -jection (of third order) [5] if

$$E^3 + \lambda E^2 = (1 + \lambda)E$$
, λ being a scalar.

In case $\lambda = 0$, we have a trijection. In case E is a projection, it is also a λ -jection.

II. Definition

Let H be a Hilbert space and E an operator on H. Let $\lambda_1, \lambda_2, \ldots, \lambda_m$ be eigen values of E and M_1, M_2, \ldots, M_m be their corresponding eigen spaces. Let P_1, P_2, \ldots, P_m be the projections on these eigen spaces. Then according to definition of spectral theorem in Simmons [4], p 279-290, the following statements are all equivalent to one another.

- 1. The M_i 's are pairwise orthogonal and span H.
- 2. The P_i 's are pairwise orthogonal, $I = \sum_{i=1}^m P_i$ and $E = \sum_{i=1}^m \lambda_i P_i$

- 3. E is normal.
- 4. Then the set of eigen values of E is called its spectrum and is denoted by $\sigma(E)$. Also

$$E = \lambda_1 P_1 + \lambda_2 P_2 + \ldots + \lambda_m P_m$$

Expression for E given above is called the spectral resolution of E.

III. Main Result

Theorem 1

Let E be a λ -jection on a Hilbert space H. Assume $\lambda \neq -1$ or -2. Then E can be expressed as a linear combination of two pairwise orthogonal projections.

Proof:-

E is a λ -jection if

$$E^3 + \lambda E^2 = (1 + \lambda)E$$

Let,
$$\lambda + 1 = \mu$$
 or $\lambda = \mu - 1$, then

$$E^3 + (\mu - 1)E^2 = \mu E$$

$$\Rightarrow E^3 - E^2 = \mu E - \mu E^2 = \mu (E - E^2)$$

$$\Rightarrow E^3 = \mu(E - E^2) + E^2 = \mu E - (\mu - 1)E^2 - \dots$$
 (1)

Applying E to both sides,

$$E^4 = \mu E^2 - (\mu - 1)E^3 = \mu E^2 - (\mu - 1)\{\mu E - (\mu - 1)E^2\}$$

$$= \mu E^2 - \mu(\mu - 1)E + (\mu - 1)^2 E^2$$

$$= -(\mu^2 - \mu)E + {\mu + (\mu - 1)^2}E^2$$

$$= (\mu - \mu^2)E + (1 - \mu + \mu^2)E^2 \qquad (2)$$

Let E can be expressed as

$$E = aP_1 + bP_2 \quad ---- \quad (3)$$

Where a and b are scalars, P_1 , P_2 pairwise orthogonal projections i.e.-

$$P_1^2 = P_1, P_2^2 = P_2, P_1P_2 = 0$$

Hence squaring E,

Solving (3) and (4) for P_1 and P_2 in terms of E and E^2 ,

$$P_1 = \frac{E^2 - bE}{a(a-b)}, P_2 = \frac{aE - E^2}{b(a-b)}$$
 (5)

Since $P_1P_2=0$,

$$\frac{E^2 - bE}{a(a-b)} * \frac{aE - E^2}{b(a-b)} = 0$$

$$\Rightarrow (E^2 - bE) * (aE - E^2) = 0$$

$$\Rightarrow aE^3 - E^4 - abE^2 + bE^3 = 0$$

$$\Rightarrow (a+b)E^3 - E^4 - abE^2 = 0$$

$$\Rightarrow (a+b)[\mu E - (\mu-1)E^2] - [(\mu-\mu^2)E + (1-\mu+\mu^2)E^2] - abE^2 = 0 \text{ using (1) and (2)}$$

Equating coefficients of E on both sides,

$$\mu(a+b) - (\mu - \mu^2) = 0$$

Since
$$\mu \neq 0$$
 as $\lambda \neq -1$,

$$(a+b)-(1-\mu)=0 \Rightarrow a+b=1-\mu$$
 —-----(6)

Equating coefficients of E^2 on both sides,

$$-(a+b)(\mu-1) - (1-\mu+\mu^2) - ab = 0$$

Using (6),

$$(1-\mu)^2 - (1-\mu+\mu^2) = ab$$

$$\Rightarrow ab = 1 - 2\mu + \mu^2 - 1 + \mu - \mu^2 = -\mu$$

Hence
$$(a - b)^2 = (a + b)^2 - 4ab = (1 - \mu)^2 + 4\mu = (1 + \mu)^2$$

So
$$a - b = \pm (1 + \mu)$$

Let
$$a - b = 1 + \mu$$
. Also $a + b = 1 - \mu$

Hence $a = 1, b = -\mu$

Therefore
$$P_1 = \frac{E^2 - bE}{a(a-b)} = \frac{E^2 + \mu E}{1 + \mu} \quad (\mu \neq -1 \text{ as } \lambda \neq -2)$$

And $P_2 = \frac{aE - E^2}{b(a-b)} = \frac{E - E^2}{-\mu(1+\mu)} = \frac{E^2 - E}{\mu(1+\mu)}$

And
$$P_2 = \frac{aE - E^2}{b(a - b)} = \frac{E - E^2}{-\mu(1 + \mu)} = \frac{E^2 - E}{\mu(1 + \mu)}$$

If we consider $a - b = -(1 + \mu)$, we get same values of P_1 and P_2

Hence $E = P_1 - \mu P_2$

Thus we have expressed E as a linear combination of two pairwise orthogonal projections.

Theorem 2

Let E be a λ -jection on Hilbert space H. There are three pairwise orthogonal projections P_1, P_2, P_3 such that

$$E = \lambda_1 P_1 + \lambda_2 P_2 + \lambda_3 P_3$$

Where λ_1 , λ_2 λ_3 are scalars and

$$I = P_1 + P_2 + P_3$$

Proof:-

We have seen in theorem 1 that

$$E = P_1 - \mu P_2$$

Where P_1, P_2 are orthogonal projections.

Let
$$Q = P_1 + P_2$$

Then
$$Q^2 = P_1^2 + P_2^2 + 2P_1P_2 = P_1 + P_2$$

So Q is also a projection. Hence I - Q is also a projection.

Let
$$P_3 = I - Q = I - P_1 - P_2$$

Then P_3 is a projection such that

$$P_1P_3 = P_1(I - P_1 - P_2) = P_1 - P_1^2 - P_1P_2 = 0$$

$$P_2P_3 = P_2(I - P_1 - P_2) = P_2 - P_2^2 - P_1P_2 = 0$$

Thus P_1 , P_2 , P_3 are pairwise orthogonal.

Moreover,
$$P_1 + P_2 + P_3 = P_1 + P_2 + I - P_1 - P_2 = I$$

Choose
$$\lambda_1 = 1$$
, $\lambda_2 = -\mu$, and $\lambda_3 = 0$

Then
$$E = P_1 - \mu P_2 = P_1 - \mu P_2 + 0 * P_3 = \lambda_1 P_1 + \lambda_2 P_2 + \lambda_3 P_3$$

Where
$$\lambda_1 = 1$$
, $\lambda_2 = -\mu$ and $\lambda_3 = 0$

Theorem 3

Range of projection P_1 denoted by R_{P_1} is given by

$$R_{P_1} = \{z : Ez = z\} = M_1(say)$$

Proof:

Let $z \in R_P$, then since P_1 is a projection, $P_1z = z$

Now
$$EP_1 = \frac{E(E^2 + \mu E)}{\mu + 1} = \frac{E^3 + \mu E^2}{\mu + 1} = \frac{\mu E + (1 - \mu)E^2 + \mu E^2}{\mu + 1} = \frac{\mu E + E^2}{\mu + 1} = P_1$$

Hence $Ez = E(P_1 z) = EP_1 z = P_1 z = z$

So $z \in M_1$

Hence
$$R_{P_1} \subseteq M_1$$
 (7)

Conversely, let $z \in M_1$, i.e. Ez = z

Then
$$E^2z = E(Ez) = Ez = z$$

So
$$P_1 z = \frac{(E^2 + \mu E)}{\mu + 1} z = \frac{E^2 z + \mu E z}{\mu + 1} = \frac{z + \mu z}{\mu + 1} = \frac{(1 + \mu)z}{\mu + 1} = z$$

Thus $z \in R_{P_1}$

From (7) and (8)

$$R_{P_1} = M_1$$

Theorem 4

We show that

$$R_{P_2} = \{z: Ez = -\mu z\} = M_2(say)$$

Proof:-

Let
$$z \in R_{P_2}$$
 then $P_2z = z$

Now
$$EP_2 = \frac{E(E^2 - E)}{\mu(\mu + 1)} = \frac{E^3 - E^2}{\mu(\mu + 1)} = \frac{\mu(E - E^2)}{\mu(\mu + 1)} = \frac{-\mu(E^2 - E)}{\mu(\mu + 1)} = -\mu P_2$$

So
$$Ez = E(P_2z) = EP_2z = (-\mu P_2)z = -\mu z$$

 $\Rightarrow z \in M_2$

Conversely, let
$$z \in M_2$$
, then $Ez = -\mu z$

Then
$$E^2z = E(Ez) = E(-\mu z) = -\mu Ez = \mu^2 z$$

Hence
$$P_2 z = \frac{(E^2 - E)}{\mu(\mu + 1)} z = \frac{\mu^2 z + \mu z}{\mu^2 + \mu} = z$$

So $z \in R_{P_2}$

From (9) and (10),

$$R_{P_2} = M_2$$

Theorem 5

We show that

$$R_{P_3} = \{z: Ez = 0\} = M_3(say)$$

Proof:-

We have

$$P_3 = I - P_1 - P_2$$

Let
$$z \in R_{P_2}$$
 then $P_3z = z$

Now
$$EP_3 = E(I - P_1 - P_2) = E - EP_1 - EP_2$$

$$= E - P_1 + \mu P_2 = E - (P_1 - \mu P_2) = E - E = 0$$

Using Theorems 1,3 and 4

Theorem 6

 $R_{P_3} = M_3$

Let E be a λ -jection on a Hilbert space H. Let $\lambda_1 = 1$, $\lambda_2 = -\mu$ and $\lambda_3 = 0$ be eigen values of E. M_1 , M_2 , M_3 be their corresponding eigen spaces. Let P_1 , P_2 , P_3 be projections on these eigen spaces where

$$P_1 = \frac{E^2 + (\lambda + 1)E}{\lambda + 2}, P_2 = \frac{E^2 - E}{(\lambda + 1)(\lambda + 2)}, P_3 = I - P_1 - P_2$$

Then $P_1 + P_2 + P_3 = I$

 P_i 's are pairwise orthogonal and spectral resolution of E is given by (assuming $\lambda \neq -1$ or -2)

$$E = \lambda_1 P_1 + \lambda_2 P_2 + \lambda_3 P_3$$

And spectrum of E is given by

$$\sigma(E) = \{1, -(\lambda + 1), 0\}$$

Proof:-

Theorems 3,4,5 show that $\lambda_1 = 1$, $\lambda_2 = -\mu$, $\lambda_3 = 0$ are eigen values of E, M_1 , M_2 , M_3 are their corresponding eigen spaces and P_1 , P_2 , P_3 are pairwise orthogonal projections on these eigen spaces. Also due to theorem 2, $E = \lambda_1 P_1 + \lambda_2 P_2 + \lambda_3 P_3$,

$$I = P_1 + P_2 + P_3$$

Hence expression for E given above is the spectral resolution of E. Also the spectrum of E, since the eigen values of E are 1, $-\mu$, and 0 is given by

$$\sigma(E) = \{1, -(\lambda + 1), 0\} \text{ as } \mu = \lambda + 1$$

IV. References

- [1]. Chandra, P. "investigation into the theory of operators and linear spaces" Ph.D. thesis, Patna University, 1977
- [2]. Dunford, N. and Schwartz, J. "linear operators part I", Interscience Publishers, Inc. New York, 1967, p.37
- [3]. Rudin, W., "Functional Analysis", McGraw-Hill Book Company, Inc., New york, 1973, P.126
- [4]. Simmons, G.F. "Introduction to topology and Modern Analysis", McGraw Hill Book Company, New York, 1963, pp,279-290

[5]. Mishra R K, "On A Special Type of Operator, Called λ -Jection of Third Order", International Journal of Scientific Research in Science and Technology (IJSRST), Online ISSN: 2395-602X, Print ISSN: 2395-6011, Volume 4 Issue 2, pp. 2321-2328, January-February 2018.