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ABSTRACT 

The study of global monopoles and the space-times associated with them has become highly relevant and has 

received attention of many research workers. Here, I am going to discuss the field of a radiating charged black 

hole with an internal monopole and this field is derived by the metric, it becomes the Bonnor-Vaidya metric, 

also it can be reduces to the metric given by Hong-Wei Yu [1993], which represents the field of a radiating 

black hole with a global monopole. The null and time-like geodesics for the metric are obtained. The metric in 

the cosmological backgrounds of the de Sitter universe and the physical aspects of these metrics and the 

particular cases associated with them are also discussed. 

 

I. INTRODUCTION 

Global monopoles are regards as topological defects produced when global symmetry breaking occurs. Kibble 

[1976] and Vilenkin [1985] have discussed the possibility of creation of global monopoles during the phase 

transition in the early universe. The study of global monopoles and the space-times associated with them has 

become highly relevant and has received attention of many investigators. Barnola and Vilenkin [1989] have 

obtained a metric describing the field of a static black hole with an internal monopole Hiscock [19901 has 

discussed particle creation through formation of global monopoles in the early universe. Hong-Wei yu [1993] 

has obtained an exact solution of Einstein field equations representing the field of a radiating black hole with 

an internal monopole In the absence of monopole his solution reduces to the radiating star solution of Vaidya 

[1951]. The charged generalization of Vaidya metric is discussed by Bonnor and Vaidya [1970]. It describes the 

exterior field of radiating charged black hole. Here I am trying to generalize Bonnor-Vaidya metric to include 

a global monopole  

In recent times considerable attention has been given to the solutions of Einstein equations that represent 

metrics embedded in a cosmological background. The Scwarzschild exterior metric in the background of de 

Sitter universe is discussed by Tolman [1934]. Mc Vittee [1933] has derived a metric which represents a mass 

particle in an expanding universe. Mallet [1985] and Vick [1985] have examined the field produced by a 

radiating mass in de Sitter universe Recently Patel and Desai [1997] have discussed the higher dimensional 

Vaidya metric in Einstein and de Sitter background. Patel and Patel [1999] have generalized this solution to 

include the electric charge. Patel and Akabari [1979] have obtained Bonnor-Vaidya metric in the background 

of Einstein universe. Tikekar and Patel [1995] have discussed the field of a radiating black hole with an 

interior monopole in the backgrounds of Einstein and de Sitter universe. Here I generalize their work to 

include the electric charge.  
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II. RADIATING CHARGED BLACK HOLE WITH A GLOBAL MONOPOLE    

 

Let us consider a space-time given by the line element 

𝑑𝑠2 = 2𝑑𝑢𝑑𝑟 + 2𝐵𝑑𝑢2 − 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2𝜃𝑑∅2)                                          (2.1) 

where, B is a function of r and u and (𝑥1, 𝑥2, 𝑥3, 𝑥4) = (𝑟, 𝜃, ∅, 𝑢). For the  

metric (2.1) the surviving components of the Einstein tensor 

 𝐺𝑖𝑘 = 𝑅𝑖𝑘 −
1

2
𝑅𝑔𝑖𝑘  are given by  

𝐺14 =
2𝐵′

𝑟
−

1

𝑟2 (1 − 2𝐵),  

 𝐺22 =
𝐺33

𝑠𝑖𝑛2𝜃
− 𝑟(2𝐵′ + 𝑟𝐵′′)  & 

𝐺44 =
2

𝑟
(2𝐵𝐵′ − 𝐵̇) −

2𝐵

𝑟2 (1 − 2𝐵)                                                                                                     (2.2)   

Here a prime and a dot denote derivatives relative to r and u respectively  

Now, to solve the Einstein-Maxwell equations    

 𝐺𝑖𝑘 = −8𝜋𝑇𝑖𝑘                                                                                        (2.3) 

Where, the energy momentum tensor 𝑇𝑖𝑘  is given by   

𝑇𝑖𝑘 = 𝐸𝑖𝑘 + 𝜎𝜌𝑖𝜌𝑘 + 𝑇𝑖𝑘(𝑚𝑜𝑛𝑜), 𝜌𝑖𝜌𝑖 = 0                                                                            (2.4) 

Where 

𝐸𝑖𝑘 = 𝑔𝑎𝑏𝐹𝑖𝑎𝐹𝑘𝑏 +
1

4
𝑔𝑖𝑘𝐹𝑎𝑏𝐹𝑎𝑏                                                                        (2.5) 

and 𝐸𝑖𝑘 is the electromagnetic energy tensor satisfying the Maxwell equations 

𝐹𝑖𝑘,𝑛 + 𝐹𝑘𝑛,𝑖 + 𝐹𝑛𝑖,𝑘 = 0 , 
𝜕

𝜕𝑥𝑖 (√−𝑔𝐹𝑖𝑘) = √−𝑔4𝜋𝐽𝑘                                                                                         (2.6) 

Where  𝐹𝑖𝑘  is the electromagnetic field tensor and  𝐽𝑖 is the 4-current vector. 𝜎𝜌𝑖𝜌𝑘 is the energy momentum 

tensor arising out of the flowing null radiation. 𝑇𝑖𝑘(𝑚𝑜𝑛𝑜)  is the energy momentum tensor for a global 

monopole. 

For the metric (2.1) the non-zero 𝑇𝑖𝑘(𝑚𝑜𝑛𝑜) are given by Hong-Wei yu [1993] 

𝑇14(𝑚𝑜𝑛𝑜) =
0

2

𝑟2    𝑇44(𝑚𝑜𝑛𝑜) = 2𝐵
0

2

𝑟2                                                                                    (2.7)   

where 
0
 is a constant. From Maxwell's equations one can find the only non-zero component 𝐹41 of 𝐹𝑖𝑘. It is 

given by 

 𝐹41 = −𝐹14 =
𝑞(𝑢)

𝑟2                                                                                                     (2.8) 

where q(u) is an arbitrary function of u and it represents the charge. The non-zero 𝐽𝑖 is given by 

4𝜋𝐽1 = −
𝑞̇

𝑟2                                                                                                             (2.9)  

Clearly 𝐽𝑖 is a null vector. The non zero  𝐸𝑖𝑘 are given by  

𝐸22 =
𝐸33

𝑠𝑖𝑛2𝜃
=

𝑟2

2𝐵
𝐸44 = 𝑟2𝐸14 =

𝑞2

8𝜋𝑟2                                                                                   (2.10) 

 

We take the null vector  𝜌𝑖  in the form  𝜌𝑖 = (0,0,0,1)                                                                                    (2.11) 

Using the above results in (2.3) we get the differential equations,  

𝑟2𝐵′′ + 2𝑟𝐵′ −
𝑞2

𝑟2 = 0     , 2𝐵′𝑟 + 2𝐵 +
𝑞2

𝑟2 + 8𝜋
0
2 − 1 = 0                                                                             (2.12)  

And             8𝜋𝜎 =
2𝐵̇

𝑟
                                                                                                                                          (2.13)   

The equations (2.12) admit the solution 
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  2𝐵 = 1 +
𝑞2(𝑢)

𝑟2 − 8𝜋
0
2 −

2𝑚(𝑢)

𝑟
                                                                                          (2.14) 

where m(u) is an arbitrary function of u and is represents the mass.  

The radiation density  is given by 

 4𝜋𝜎 =
1

𝑟2 (
𝑞̇𝑞

𝑟
− 𝑚̇)                                                                                                                                               (2.15)  

The geometry of our solution is described by the line element 

𝑑𝑠2 = 2𝑑𝑢𝑑𝑟 + [1 +
𝑞2(𝑢)

𝑟2 − 8𝜋
0
2 −

2𝑚(𝑢)

𝑟
] 𝑑𝑢2 − 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2𝜃𝑑∅2)                                                         (2.16)  

The metric (2.16) describes the field of a radiating charged black hole with a global monopole, when 
0
 = 0 

we get the Bonnor-Vaidya metric, when q = 0 the metric (2.16) reduces to the metric given by Hong-Wei yu 

[1993].  
0
= 0 = q, we recover the usual radiating star solution of Vaidya [1951]. 

 

III. THE TIME-LIKE AND NULL GEODESICS 

In the previous section we have obtained the metric (2.16) for the field of a charged black hole with a global 

monopole. The mass m(u) is positive and is some decreasing function of u, The charge q(u) may be either 

positive or negative, and its magnitude is a decreasing function of u. A particle whose motion is due to the 

gravitational field is determined by the Lagrangian.  

𝐿 =
1

2
𝑔𝑖𝑘

𝑑𝑥𝑖

𝑑𝜏

𝑑𝑥𝑘

𝑑𝜏
                                                                                                                                       (3.1) 

 

where 𝜏 is the proper time. Using (2.16) in (3.1) one can obtains 

𝐿 =  
1

2
(1 +

𝑞2(𝑢)

𝑟2 − 8𝜋
0
2 −

2𝑚(𝑢)

𝑟
) 𝑢̇ + 𝑢̇𝑟̇ −

1

2
𝑟2𝜃̇2 −

1

2
𝑟2𝑠𝑖𝑛2𝜃∅̇2                                                                    (3.2) 

Here a dot indicates differentiation by 𝜏  . The geodesic equations can be found from 
𝑑

𝑑𝜏
(

𝜕𝐿

𝜕𝑥̇𝑖) =
𝜕𝐿

𝜕𝑥𝑖                                                                                                                                                           (3.3) 

𝑑

𝑑𝜏
[(1 +

𝑞2(𝑢)

𝑟2 − 8𝜋
0
2 −

2𝑚(𝑢)

𝑟
) 𝑢̇ + 𝑟̇] = (−

1

𝑟

𝑑𝑚

𝑑𝑢
+

𝑞

𝑟2

𝑑𝑞

𝑑𝑢
) 𝑢̇2                                                                             (3.4) 

𝑑2𝑢

𝑑𝜏2 = (
𝑚

𝑟2 −
𝑞2

𝑟3) 𝑢̇2 − 𝑟𝜃̇2 − 𝑟𝑠𝑖𝑛2𝜃∅̇2                                                                                                                   (3.5) 

𝑑

𝑑𝜏
(𝑟2𝜃̇) = 𝑟2𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃∅̇2                                                                                                                                      (3.6) 

𝑑

𝑑𝜏
(𝑟2𝑠𝑖𝑛2𝜃∅̇2) = 0                                                                                                                                                (3.7) 

From the equations (3.6) and (3.7), it is clear that the total angular momentum is conserved and hence the 

motion of the test body will be in a plane. The plane of motion is chosen to be 𝜃 =
𝜋

2
= constant. 

The equations of motion then become 
𝑑𝑣

𝑑𝜏
=

𝐿𝑚

𝑟
−

𝑞𝐿𝑞

𝑟2                                                                                                                                                            (3.8) 

𝑑2𝑢

𝑑𝜏2 = (
𝑚

𝑟2 −
𝑞2

𝑟3) 𝑢̇2 −
𝑙2

𝑟3                                                                                                                                           (3.9) 

  
𝑑𝑙

𝑑𝜏
= 0                                                                                                                                                                   (3.10) 

where,                  𝑣 = (1 +
𝑞2(𝑢)

𝑟2 − 8𝜋
0
2 −

2𝑚(𝑢)

𝑟
) 𝑢̇ + 𝑟̇                                                                                   (3.11) 

 𝐿𝑚 = −
𝑑𝑚

𝑑𝑢
𝑢̇2                                                                                                                                                       (3.12) 

   𝐿𝑞 = −
𝑑𝑞

𝑑𝑢
𝑢̇2 ,  𝑙 = 𝑟2∅̇                                                                                                                                      (3.13) 

From time-like geodesics, the Langrangian has the normalization 

2𝐿 = (𝑣 + 𝑟)̇𝑢̇ −
𝑙2

𝑟2 = 1                                                                                                                                        (3.14)  
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and hence (3.14) implies          𝑢̇ =  
1+

𝑙2

𝑟2

𝑣+𝑟̇
                                                                                                             (3.15) 

From (3.11) we get                   𝑢̇ =  
(𝑣−𝑟)̇

(1+
𝑞2(𝑢)

𝑟2 −8𝜋0
2−

2𝑚(𝑢)

𝑟
)
                                                                                    (3.16) 

From (3.15) and (3.16) one can obtained   

 𝑣2 = 𝑟̇2 + (1 +
𝑙2

𝑟2) (1 +
𝑞2(𝑢)

𝑟2 − 8𝜋
0
2 −

2𝑚(𝑢)

𝑟
)                                                                                                (3.17) 

The differentiation of equation (3.17)  

𝑑𝑣

𝑑𝜏
= 𝑟̇

𝑑𝑟̇

𝑑𝜏
+ 𝑟̇

𝑚

𝑟2 − 𝑟̇
𝑞2

𝑟3 − 𝑟̇(8𝜋
0
2 − 1)

𝑙2

𝑟3 + 𝑟̇
3𝑚𝑙2

𝑟4 − 𝑟̇
2𝑞2𝑙2

𝑟5 + (
𝐿𝑚

𝑟
−

𝑞𝐿𝑞

𝑟2 )
(1+

𝑙2

𝑟2)

𝑢̇
                                              (3.18) 

From (3.14) and (3.8) implies         𝑣 =
(1+

𝑙2

𝑟2)

𝑢̇
− 𝑟̇   and    

𝑑𝑣

𝑑𝜏
=

𝐿𝑚

𝑟
−

𝑞𝐿𝑞

𝑟2  .  

Therefore,       𝑣
𝑑𝑣

𝑑𝜏
= (

𝐿𝑚

𝑟
−

𝑞𝐿𝑞

𝑟2 ) (
(1+

𝑙2

𝑟2)

𝑢̇
− 𝑟̇)                                                                                                   (3.19) 

 From (3.18) and (3.19) we obtained  

𝑑2𝑟

𝑑𝜏2 =  −
𝐿𝑚

𝑟
−

𝑚−𝑞𝐿𝑞

𝑟2 +
𝑞2+(8𝜋0

2−1)𝑙2

𝑟3 −
3𝑚𝑙2

𝑟4 −
2𝑞2𝑙2

𝑟5                                                                                            (3.20) 

This is the effective central force acting on the test particle and agrees with the result obtained by Koberlein 

and Mallett [1995] with the addition of monopole charge. For null geodesics, the normalization of the 

Lagrangian is 

2𝐿 = (𝑣 + 𝑟)̇𝑢̇ −
𝑙2

𝑟2 = 0                                                                                                                                        (3.21) 

and consequently we get  𝑢̇ =  
𝑙2

𝑟2⁄

𝑣+𝑟̇
                                                                                                                     (3.22) 

With (3.16) and (3.22), the normalization condition on the Lagrangian may be written as                

                                        𝑣2 = 𝑟̇2 +
𝑙2

𝑟2 (1 +
𝑞2(𝑢)

𝑟2 − 8𝜋
0
2 −

2𝑚(𝑢)

𝑟
)                                                            (3.23) 

Differentiation of the above equation gives 

             
𝑑𝑣

𝑑𝜏
= 𝑟̇

𝑑𝑟̇

𝑑𝜏
− 𝑟̇(8𝜋

0
2 − 1)

𝑙2

𝑟3 + 𝑟̇
3𝑚𝑙2

𝑟4 − 𝑟̇
2𝑞2𝑙2

𝑟5 + (
𝐿𝑚

𝑟
−

𝑞𝐿𝑞

𝑟2 )
𝑙2

𝑟2𝑢̇
                                                           (3.24)    

From (3.21) and (3.8) one can derive, 

                                                   𝑣 =
𝑙2

𝑟2𝑢̇
− 𝑟̇   and    

𝑑𝑣

𝑑𝜏
=

𝐿𝑚

𝑟
−

𝑞𝐿𝑞

𝑟2   

Therefore,                              𝑣
𝑑𝑣

𝑑𝜏
=

𝑙2

𝑟2𝑢̇
(

𝐿𝑚

𝑟
−

𝑞𝐿𝑞

𝑟2 ) − 𝑟̇
𝐿𝑚

𝑟
+ 𝑟̇

𝑞𝐿𝑞

𝑟2                                                                     (3.25) 

 From (3.24) and (3.25) one can obtained,  

𝑑2𝑟

𝑑𝜏2 = −
𝐿𝑚

𝑟
+

𝑞𝐿𝑞

𝑟2 +
(8𝜋0

2−1)𝑙2

𝑟3 −
3𝑚𝑙2

𝑟4 −
2𝑞2𝑙2

𝑟5                                                                                                       (3.26)  

Here 𝜏 is not the proper time but a linearly related parameter.  

Multiplying (3.26) by 2
𝑑𝑟

𝑑𝜏
 and integrating over r, we can derive 

(
𝑑𝑟

𝑑𝜏
)

2
= −2𝐿𝑚𝑙𝑜𝑔𝑟 −

2𝑞𝐿𝑞

𝑟
+

(8𝜋0
2−1)𝑙2

𝑟2 +
2𝑚𝑙2

𝑟3 −
𝑞2𝑙2

𝑟4 + 𝑘                                                                                (3.27) 

 

Where k is an integration constant. Let us take 𝑦 =
1

𝑟
  then 

𝑑𝑟

𝑑𝜏
=  −𝑙

𝑑𝑦

𝑑∅
   

Therefore the equation (3.27) becomes 

(
𝑑𝑦

𝑑∅
)

2
=  

2𝐿𝑚𝑙𝑜𝑔𝑦

𝑙2 −
2𝑞𝐿𝑞𝑦

𝑟2 + (8𝜋
0
2 − 1)𝑦2 + 2𝑚𝑦3 − 𝑞2𝑦4 +

𝑘

𝑙2  

Differentiating the above equation with respect to  ∅, then we have 
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𝑑2𝑦

𝑑∅2 − (8𝜋
0
2 − 1)𝑦 =  3𝑚𝑦2 − 2𝑞2𝑦3 +

𝐿𝑚

𝑙2𝑦
−

𝑞𝐿𝑞

𝑙2                                                                                              (3.28) 

Equation (3.28) is the well-known equation for light deflection, with additional terms due to charge, radiation 

of mass and charge and monopole. 

Koberlein and Mallett [1995] have performed a detailed study of the geodesics in the field of a radiating 

charged black hole. The presence of monopole does not give any qualitative change in the nature of time-like 

and null geodesics. So we omit the other details regarding the geodesics. 

 

IV. A RADIATING CHARGED BLACK HOLE WITH A MONOPOLE IN de SITTER UNIVERSE 

In this section we wish to generalize the solution of section-2 to include the cosmological constant  ∧ . So take 

the metric in the form (2.1) and use the field equations. 

 𝐺𝑖𝑘 = −8𝜋𝑇𝑖𝑘 −∧ 𝑔𝑖𝑘                                                                                                             (4.1) 

where 𝑇𝑖𝑘  are given by (2.4). Using the field equations (4.1) and relevant results of section-2 we get the 

differential equations 

2𝐵′

𝑟
−

1

𝑟2
(1 − 2𝐵) +

𝑞2

𝑟4 +∧ +
8𝜋0

2

𝑟2 = 0                                                                                                                     (4.2) 

𝐵′′ +
2𝐵′

𝑟
−

𝑞2

𝑟4 + ∧ = 0   and   
8𝜋0

2

𝑟2 =
2𝐵′′

𝑟
                                                                                                                (4.3)  

The non zero 𝑗𝑖 is given by the equation (2.9) The equations (4.2) admit the solution 

 2𝐵 = 1 +
𝑞2(𝑢)

𝑟2 − 8𝜋
0
2 −

2𝑚(𝑢)

𝑟
−

∧

3
𝑟2                                                                                                                  (4.4)  

where m and q are function of u only. The radiating density is given by 

 8𝜋𝜎 =
1

𝑟2  (
𝑞 𝑞̇

𝑟
− 𝑚̇)                                                                                                                                         (4.5) 

The result (4.5) shows that the cosmological constant has no effect on density 𝜎.     

The explicit form of the line element of this solution is 

           𝑑𝑠2 = 2𝑑𝑢𝑑𝑟 + [1 +
𝑞2(𝑢)

𝑟2 − 8𝜋
0
2 −

2𝑚(𝑢)

𝑟
−

∧

3
𝑟2] 𝑑𝑢2 − 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2𝜃𝑑∅2)                                    (4.6) 

The metric (4.6) represents the Bonnor-Vaidya solution with a global monopole in the background de Sitter 

universe.  

When 
0

= 0 and ∧ = 0 , the metric (4.6) reduces to the Bonnor-Vaidya metric. When m and q are constants, 

we recover the Reissner-Nordstrom de Sitter metric with global monopole. When, 𝑚 = 𝑞 = 
0

= 0,  metric 

(4.6) gives us tie well known de Sitter metric. Thus the metric (4.6) describes the field of a radiating charged 

black hole with a monopole embedded in de Sitter universe. On the same way we can discussed a radiating 

charged black hole with a monopole in Einstein Universe but its leave for readers.  

 

V. CONCLUDING REMARKS 

 

Dadhich and Patel [1999] have presented a method to incorporate the field of a global monopole in any 

spherically symmetric solution of Einstein field equations. As an application of this method they have derived 

the metrics describing the fields of Mc Vittee particle with a global monopole in expanding universe and 

Vaidya radiating star with a global monopole. By their method the solutions discussed by us can also be 

obtained. The particle motion for the solutions of sections 4 can be discussed. But, for the sake of brevity we 

shall not enter into these details here. 
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