
ICASCT2525 | ICASCT | March-April-2017 (3)5 : 146-153]

 1st International Conference on Applied Soft Computing Techniques

22 & 23.04.2017

In association with
International Journal of Scientific Research in Science and Technology

146

Data Partitioning Method for Mining Frequent Itemset Using MapReduce

R. Divya Bharathi1, A. S. Karthik Kannan2, E. Jai Vinitha3

1
Department of IT, M.Tech, Mepco Schlenk Engineering College, Sivakasi, Tamilnadu, India

bharathikrishnan2.db@gmail.com1
2
Department of IT, Assistant Professor, Mepco Schlenk Engineering College, Sivakasi, Tamilnadu, India

 karthikkannan@mepcoeng.ac.in2

3
Department of IT, M.Tech, Mepco Schlenk Engineering College, Sivakasi, Tamilnadu, India

 evinithait12@gmail.com3

ABSTRACT

Existing parallel mining algorithm lacks in communication and mining overhead. To overcome this problem a data

partitioning method using MapReduce model is proposed. In this model, three MapReduce tasks are implemented to

improve the performance of frequent itemset mining in parallel. In second MapReduce job the mapper perform

LSH based approach that integrates the item grouping and partitioning process. The reducer performs FP-Growth

based on the partition data to generate all frequent patterns in the data. The main idea of data partitioning is to group

relevant transactions and reduce the number of the relevant transaction. Extensive experiments using IBM Quest

Market Basket Synthetic Datasets to show that data partitioning is efficient, robust and scalable on Hadoop.

Keywords : Frequent Itemset Mining, Mapreduce Model, Parallel Mining, Data Partitioning.

I. INTRODUCTION

Frequent mining is an important problem in sequence

mining and association rule mining. Increasing the

speed of FIM is critical because Frequent itemset

mining consumes more amount of mining time for its

high computation in input and output process. When

data in mining applications become very large,

sequential frequent mining algorithm suffer from

performance when it runs on single node [1] [2]. To

overcome the problem of performance distortion

therefore a framework using MapReduce a widely

adopted programming model for processing big

datasets by exploiting the parallelism among

computing nodes of a cluster. We describe how to

distribute a large dataset over the cluster to balance

load across the Hadoop nodes to optimize the

performance of parallel FIM.

The frequent itemset mining algorithm can be divided

in to two Apriori and FP growth. Apriori is a well

known method for mining frequent itemsets in a

transactional database. The algorithm works within a

multiple pass generation and test framework,

comprising the joining and pruning phases to reduce

the number of candidates before scanning the database

for support counting so each processor has to scan a

database multiple times and to exchange an excessive

number of candidate itemsets with other processors.

Therefore Apriori parallel FIM solution suffer

potential problems of high I/O and synchronization

overhead, which make very difficult to scale up these

parallel algorithm.

1.1 Motivations

The main contributions of this paper are given as

follows

1) We develop the parallel frequent itemset mining

method using MapReduce programming model.

2) partitioning of data in mapreduce play vital role in

the performance while processing large datasets.

mailto:Bharathikrishnan2.db@gmail.com3

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

Volume 3 | Issue 4 | IJSRST/Conf/ICASCT/2017/25

147

1.2 MapReduce Framework

MapReduce is a promising parallel and scalable

programming model for data intensive applications. A

mapreduce program distributes computation as a

sequence of parallel operations on dataset of key/value

pairs. MapReduce has two phases namely, the map

phase and Reduce phase. The map task splits the input

in to a N number of fragments, which are distributed

evenly to the first tasks across the cluster nodes by

node manager for data processing. The input data is

split in to small fragments as key-value pair and each

map produces key-value pair as intermediate result.

The reduce unit take the intermediate result of the map

function as key and list of values and output the

collection of values. Both tasks can be performed in

parallel. The inputs pairs of map and the output pairs

of reduce are managed by an underlying distributed

file system. It offers automatic data management,

transparent fault tolerant processing and highly

scalable. The mapreduce can be an efficient platform

for frequent itemset mining in large scale dataset.

Hadoop is open source implementation of mapreduce

programming model which relies on its own Hadoop

Distributed File System (HDFS). HDFS is designed

for storing very large files with streaming data access

patterns running on commodity hardware. At the heart

of HDFS is a single Name Node a master server that

manages the file system. The master node consists of

task tracker, job tracker, name node and data node. A

slave node acts as both a task tracker and data node.

II. RELATED WORK

Many parallel algorithms have been proposed to

enhance the performance of the Apriori frequent

itemset mining. In Apriori based frequent itemset

mining [3] they proposed three algorithms namely

single pass counting (SPC), fixed passes combined

counting (FPC) and Dynamic pass combined counting

(DPC). SPC finds out frequent k itemset at k-th pass of

database. FPC finds out (k-1) and (k+1) and up to

(k+m) itemset in a map reduce phase. The third

algorithm DPC, considers the workloads of nodes and

find out various length of frequent itemsets as possible

in a map-reduce phase and also DPC calculates the

candidate threshold and prevents the generation of

many false positive candidates. It performs well when

compared with the SPC and FPC.

X.Lin proposed Mr. Apriori [4] algorithm which runs

on a parallel Map/Reduce framework. Prune (Ck+1)

function to remove the non frequent itemset from the

transaction. Where this function eliminates

redundancy execution and ck cannot be subset of

frequent item sets. This algorithm first calculate

frequent itemset for each map node as the time

complexity with respect to transaction t, Number of

transactions n , Number of item in the transactions m.

In second task is to calculate frequent item set with an

additional item by joining, sorting and eliminating the

duplicated items in each map node. Finally similarity

can be calculated at the reduce nodes and eliminate the

frequencies that do not meet the minimum support.

S. Hong, Z. Huaxuan, C.Shiping, and H.Chunyan [5]

proposed improved FP growth algorithm which

combines the sub-tree with same patterns which has

high support count. Further it combines with

mapreduce computing model MR-IFP (mapreduce-

improved FP). It uses the depth first method to mine

the frequent itemsets and saves a great deal of space.

Built cloud platform to implement the IFP based on

linked list Therefore it achieves high efficiency and

scalability.

M. Liroz-Gistau, R. Akbarinia, D. Agrawal, E.Pacitti,

and P. Valduriez [6] state that Map Reduce jobs are

executed over distributed system composed of a name

node and data nodes. Input is dividing into several

splits and assigned to map tasks. MR-Part A

partitioning technique is used for automatic

partitioning of mapreduce input phase and a locality

scheduling is done at the reduce tasks simultaneously

so it reduce the amount of data shuffling between map

unit and reduce unit .

L. Zhou, Z. Zhong , J. Chang [7] proposed a Balanced

parallel FP growth (BPFP) uses two round of

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

Volume 3 | Issue 4 | IJSRST/Conf/ICASCT/2017/25

148

mapreduce to parallelize FP growth. First phase

divides entire mining task in to relatively even sub task

to improve parallelization. The second phase divides

all the load units in to several groups. It eliminates

dependency between parallel tasks. In order to balance

the load a work load of each mining unit is calculated

and then fairly divides this unit into several groups. By

using this balance metric BPFP achieves high

parallelization.

III. PROPOSED WORK

3.1 Partitioning of Data

Data partitioning is done using voronoi diagram based

partitioning [8]. In this technique spaces are divided

into number of parts. In prior a group of set which is

referred as pivots (seeds) is chosen at preprocessing

phase. For each pivot point there is a corresponding

part consisting of all data points closer to it .The split

regions for particular pivot are called voronoi cells.

For a dataset D set of k pivots are selected then all

objects in the Dataset D are partitioned into k disjoint

sets (denoted as G1, G2,..Gk) and each object in D are

assigned to the nearest pivot.

3.2 Distance Metric

In order to compute the similarity between the

transactions Jaccard similarity is computed. A Jaccard

similarity value 1 indicates two transactions are highly

similar. The similarity between of two transactions T1

and T2 is given as below,

 J (T1,T 2) =

J(T1,T2) is a value in between 0 to 1,if it is zero then

row set is not equal, if it is 1 then the row set are same.

3.3 K-means selection of pivots

Pivot selection is the main process in partitioning the

data. K-means strategy is used to select the pivots. It

aims to partition m objects into k clusters. Given a set

of objects (y1,y2…yk) are partitioned in to clusters

c1,c2,.ck where each data points belong to a cluster for

a particular mean. Pivot selection is carried out

preprocessing phase.

3.4 Partitioning Strategies

The two partition strategies are MinHash and LSH-

Based partitioning in that MinHash is a basic

foundation for Locality Sensitive Hashing.

3.4.1 MinHash

MinHash provides solution to determine the similarity

between two sets [9]. MinHashing technique is mainly

for dimension reduction large sets are replaced by

smaller sets called “signatures”. There are two phases

to generate signatures.

1) Characteristic matrix

2) MinHash Signatures

Characteristic matrix

Characteristic matrix will be obtained from FList

(frequent one itemset List) and original dataset. Where

column represent transaction and row denotes items in

the transaction. For a given Dataset D= {T1, T2, .Tk},

which contains m items. If the item in the FList

present in the transaction T1 then the item alone will be

set as 1 otherwise it will be set as 0. Likewise the

entire transaction in Dataset will be checked with

FList and m (number of items) by n

(number of rows) characteristic matrix of M will be

obtained.

3.4.2 MinHash Signatures

Signature matrix will be constructed using

characteristic matrix M for every item in the M

generates hash function [10]. Initially the signature

matrix value will be set as infinity after that if the

transaction contains 1 then replace hash value in the

signatures. Likewise for each transaction compute

signature value. The characteristic matrix and

signature matrix would consists of the same number of

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

Volume 3 | Issue 4 | IJSRST/Conf/ICASCT/2017/25

149

columns but very less rows, thereby drastically

reducing the dimensions.

LSH-Based partitioning

Based on the banding technique, the rows in the

signature matrix are divided into (b x r) where b

represents the number of bands. Each band consists of

maximum r rows. For each band a hash function is

defined. The function takes column of its

corresponding band and hashes them to large number

of buckets. We can use the same hash function. For a

any hash family if any two sets m1 and m2 satisfy the

below conditions, then hash family is called (R, q, m1,

m2).

A) If ||m1-m2|| < R

B) If ||m1-m2|| < cR

Above condition is used to check similar sets are

mapped in to the same buckets and dissimilar sets will

be mapped in the individual bucket in hash table

IV. IMPLEMENTATION

Data partitioning phase consist of three phases. In

preprocessing phase selection of k pivots will

be done at the master node , which will be the input for

second phase in mapreduce.

A. First MapReduce job

The first MapReduce phases discovers all frequent

one-itemsets. The transaction in the dataset is

partitioned into Data Nodes and items in the

transaction and items in the transaction are

counted parallel.

System Architecture

Figure 1. system architecture of pfp

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

Volume 3 | Issue 4 | IJSRST/Conf/ICASCT/2017/25

150

Figure 2. Overview of Data Partitioning Algorithm

The input of Map tasks is a database, and the output of

Reduce tasks is one frequent itemsets. The map input

format will be <Long Writable offset, Text value> and

the reduce output format will be in the format of <Text

item, Long Writable count> then the frequent one

itemset count along with itemsets are stored in a file

called F-List.

B. Second MapReduce job

Mapper

First MapReduce output will be given as an input for

the second phase in MapReduce. In second

MapReduce phase sorting of frequent one itemset will

be done using descending order and again it will be

stored in a file F-List. By using this F-List signature

matrix will be generated. Using k pivots similar

transactions are grouped together and form a Group

List with the corresponding unique group id (Gid).

From the signature matrix LSH-Based partitioning is

carried with corresponding Gid.

Reducer

Each reducer performs the local fp growth. Second

mapreduce output will be used to generate frequent all

patterns. fp growth while processing produce more

dependent transactions are partition and it discovers

the frequent transaction as final result.

C. Third MapReduce job

The last MapReduce job aggregates the result obtained

from the second MapReduce job. Using the frequent

pattern and generates candidate itemset for each

itemsets and creates the final output.

Algorithm 1 LSH-fp-growth

Input: FList, k pivots, DBi;

Output: Transactions for each Group id

1: MAP function contain(key as offset and

values as Databasei)

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

Volume 3 | Issue 4 | IJSRST/Conf/ICASCT/2017/25

151

2: load FrequentList(FList), m pivots;

3: Grouplist will be generated from the FList and

m pivots

4: for each Transaction in Database perform

5: split the items in transaction and store it as

items[]

6: for every item in items[] perform

7: if items is present in FList then store the item

in b[]

8: if end

9: for end

10: put the Generated-signature matrix(b[]) into

arraylist of signaturematrix;

11: For end

12: For every ((column)i in signaturematrix)

perform

13: divide column of the signaturematrix into B

bands with r rows;

14: Store the column in Hashbucket using

hashmap

15: For end

16: if one band of column in signaturematrix and

pivot pk is mapped in to same bucket do

17: Assign j to the Gid;

18: Output contains Gid and new transaction tree

of bi

19: If End

20: For each Grouplist (transaction≠i) do

21: if column in sigmatrix contains item in

Grouplist then

22: Assign Gid to t;

23: Output contains Gid and new transaction tree

of bi

24: If end

25: For end

26: Function end

Input: transactions corresponding to each Gid;

Output: frequent k-itemsets

 28: Reduce contains key as Groupid and values

as database

29: Load Grouplists;

30: perform Grouplist according to Gid

31: perform local fp growth

32: for all (Transaction in Database Gid) do

33: build FP tree for the transaction

34: for end

35: for all element in b do

36: Define maxheap with the size K

37: perform TopKFpgrowth in maxheap

 38: for all transaction in TopKFpgrowth

39: Output contains final transaction and

support

 40: for end

 41: for end

 42: function end

In LSH Algorithm each map phase takes transaction as

pair <Long writable offset, Text record> then FList

and k pivots are loaded initially. Each item in the

transactions is split and compares with the FList items

and stored in an array list b. From the b characteristic

matrix and signature matrix will be generated. The

signature matrix will be divide in to B bands each of

which contains r rows (B x r= l). Then the column in

the signature matrix are inserted in to the number of

hash bucket if the sets are similar then it will be

hashed to the same bucket. Assume that the similarity

between two columns of signature matrix is d then

they both transactions are considered similar. If a

column in the signature matrix shares the similar

bucket with a band B in pivot p then it will be denoted

as a pair< pk, Ti>. Finally the map output will be a pair

of < pk, Ti> and in reducer fp growth will be

performed to generate frequent patterns.

ALGORITHM 2 Creation of SIGNATURE-

MATRIX

Input: item transaction matrix of b[];

Output: generated signature matrix b[]

1: Function to generate signature matrix of b[]

2: For N number of hashfunction

3: Assign every value in MinHash to max

integer;

4: For end

5: For each(j=0;j<numberOfhashfunction;j++)

perform

6: For every element in the b[] perform

7: Convert element to integer and store in value

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

Volume 3 | Issue 4 | IJSRST/Conf/ICASCT/2017/25

152

8: Convert byte to hash of value and perform left

shift 24 <- bytetohash[1];

9: Convert byte to hash of value and perform left

shift 16 <- bytetohash[2];

10: Convert byte to hash of value and perform left

shift 8 <- bytetohash[3];

11: Convert byte to hash of value <-bytetohash[4];

12: hashindex←hashfunction[j]*hash(bytesToHas

h);

13: if(minhashvalue[j]) > hashindex then

14: minhashvalues[j]=hashindex;

15: if end

16: For end

17: For end

18: Function end

Algorithm 2 describes about the generation of

signature matrix. It is really difficult to create

signature matrix from the large characteristic matrix.

In order to avoid the complexity Minwise Independent

permutation technique [10] is used to speed up the

process. So the high dimensional matrix will be

reduced to low dimensional matrix and time

complexity is greatly reduced.

V. DATASET DESCRIPTION

We generated a synthentic dataset using IBM quest

market-basket data generator [11], initially the

average transaction is set as 8 after that vary the

average transaction and number of items to meet the

various need in the experiment. The characteristic of

our dataset are described in Table1.

Table 1:DataSet

Average

length

Item in

transaction

Average size of the

transaction

8 1000 6.5B

10 4000 17.5B

40 10000 31.5B

60 10000 43.6B

85 10000 63.7B

VI. Experimental Evaluation

We evaluate the performance of partitioning technique

in Hadoop equipped with 1 name node and 8 data

nodes. Each node has an Intel Pentium-4.3.0 GHz

processor 256 MB main memory and runs on the

Linux 2.3 OS, on which java JDK 1.7.0 and Hadoop

2.1 are installed. We use the default replication factor

3 as a hadoop configuration parameter.

VII. PERFORMANCE EVALUATION

7.1 Impact of pivot Number

We vary the number of pivot point from 20 to 100 and

obtain the running time. Our partition technique

achieve overall performance when compared to pfp

technique. if we increase pivot number then Running

time get increased. When the pivot number is 60 the

running time is minimized.

Figure 3. Impact of number of pivots

0

5

10

15

20 40 60 80 100

R
u

n
n

in
g

ti
m

e
(1

0
0

s)

pivot Number

Impact of number of pivots

pfp

partiton
technique

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

Volume 3 | Issue 4 | IJSRST/Conf/ICASCT/2017/25

153

7.2 Impact of minimum support count

Figure 4. Impact of minimum support count

VIII. REFERENCE

[1] Yaling Xun, Jifu Zhang,Xiao Qin,” FiDoop-

DP:Data Partitioning in frequent itemset mining

on Hadoop Clusters IEEE Transcations on

Parallel and distributed system, vol28, jan.2017.

[2] M. J. Zaki, “Parallel and distributed association

mining: A survey,” IEEE Concurrency, vol. 7,

no. 4, pp. 14–25, Oct. 1999.

[3] Pramudiono and M. Kitsuregawa, “Fp-tax: Tree

structure based generalized association rule

mining,” in Proc. 9th ACM SIGMOD Workshop

Res. Issues Data Mining Knowl. Discovery,

2004, pp. 60–63.

[4] M.-Y. Lin, P.-Y. Lee, and S.-C. Hsueh,

“Apriori-based frequent itemset mining

algorithms on mapreduce,” in Proc. 6th Int.

Conf. Ubiquitous Inform. Manag. Commun.,

2012, pp. 76:1–76:8.

[5] X. Lin, “Mr-apriori: Association rules algorithm

based on mapreduce,” in Proc. IEEE 5th Int.

Conf. Softw. Eng. Serv. Sci., 2014, pp. 141–144.

[6] S. Hong, Z. Huaxuan, C. Shiping, and H.

Chunyan, “The study of improved FP-growth

algorithm in mapreduce,” in Proc. 1st

Int.Workshop Cloud Comput. Inform. Security,

2013, pp. 250–253.

[7] M. Liroz-Gistau, R. Akbarinia, D. Agrawal, E.

Pacitti, and P. Valduriez, “Data partitioning for

minimizing transferred data in mapreduce,” in

Proc. 6th Int. Conf. Data Manag. Cloud, Grid

P2P Syst., 2013, pp. 1–12.

[8] L. Zhou, Z. Zhong, J. Chang, J. Li, J. Huang,

and S. Feng, “Balanced parallel FP-growth with

mapreduce,” in Proc. IEEE Youth Conf. Inform.

Comput. Telecommun., 2010, pp. 243–246.

[9] W. Lu, Y. Shen, S. Chen, and B. C. Ooi,

“Efficient processing of k nearest neighbor joins

using mapreduce,” Proc. VLDB Endowment,

vol. 5, no. 10, pp. 1016–1027, 2012.

[10] J. Leskovec, A. Rajaraman, and J. D. Ullman,

Mining Massive Datasets. Cambridge, U.K.:

Cambridge Univ. Press, 2014.

[11] Z.Broder,M. Charikar,A. M. Frieze, and M.

Mitzenmacher, “Min-wise independent

permutations,” J. Comput. Syst. Sci., vol. 60, no.

3, pp. 630– 659, 2000.

[12] L. Christopher. (2001). Artool Project

[J].[Online].Available

http://www.cs.umb.edu/laur/ARtool/ accessed

Oct. 19, 2012

0

2

4

6

8

10

2 4 6 8

R
u

n
n

in
g

 T
im

e
(1

0
0

s)

Minimum Support

Impact of Minimum Support

pfp

partitioning

technique

