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ABSTRACT 
 

Existing parallel mining algorithm lacks in communication and mining overhead. To overcome this problem a data 

partitioning method using MapReduce model is proposed. In this model, three MapReduce tasks are implemented to 

improve the performance of  frequent itemset mining in parallel. In second MapReduce job the mapper perform 

LSH based approach that integrates the item grouping and partitioning process. The reducer performs FP-Growth 

based on the partition data to generate all frequent patterns in the data. The main idea of data partitioning is to group 

relevant transactions and reduce the number of the relevant transaction. Extensive experiments using IBM Quest 

Market Basket Synthetic Datasets to show that data partitioning is efficient, robust and scalable on Hadoop. 

Keywords : Frequent Itemset Mining, Mapreduce Model, Parallel Mining, Data Partitioning. 

 

I. INTRODUCTION 

 

Frequent mining is an important problem in sequence 

mining and association rule mining. Increasing the 

speed of FIM is critical because Frequent itemset 

mining consumes more amount of mining time for its 

high computation in input and output process. When 

data in mining applications become very large, 

sequential frequent mining algorithm suffer from 

performance when it runs on single node [1] [2]. To 

overcome the problem of performance distortion 

therefore a framework using MapReduce a widely 

adopted programming model for processing big 

datasets by exploiting the parallelism among 

computing nodes of a cluster. We describe how to 

distribute a large dataset over the cluster to balance 

load across the Hadoop nodes to optimize the 

performance of parallel FIM. 

 

The frequent itemset mining algorithm can be divided 

in to two Apriori and FP growth. Apriori is a well 

known method for mining frequent itemsets in a 

transactional database. The algorithm works within a 

multiple pass generation and test framework, 

comprising the joining and pruning phases to reduce 

the number of candidates before scanning the database 

for support counting so each processor has to scan a 

database multiple times and to exchange an excessive 

number of candidate itemsets with other processors. 

Therefore Apriori parallel FIM solution suffer 

potential problems of high I/O and synchronization 

overhead, which make very difficult to scale up these 

parallel algorithm. 

 

1.1 Motivations 

 

The main contributions of this paper are given as 

follows 

1) We develop the parallel frequent itemset mining 

method using MapReduce programming model. 

2) partitioning of data in mapreduce play vital role in 

the performance while processing large datasets. 
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1.2 MapReduce Framework 

 

MapReduce is a promising parallel and scalable 

programming model for data intensive applications. A 

mapreduce program distributes computation as a 

sequence of parallel operations on dataset of key/value 

pairs. MapReduce has two phases namely, the map 

phase and Reduce phase. The map task splits the input  

in to a  N number of fragments, which are distributed 

evenly to the first tasks across the cluster nodes by 

node manager for data processing. The input data is 

split in to small fragments as key-value pair and each 

map produces key-value pair as intermediate result. 

The reduce unit take the intermediate result of the map 

function as key and list of values and output the 

collection of values. Both tasks can be performed in 

parallel. The inputs pairs of map and the output pairs 

of reduce are managed by an underlying distributed 

file system. It offers automatic data management, 

transparent fault tolerant processing and highly 

scalable. The mapreduce can be an efficient platform 

for frequent itemset mining in large scale dataset. 

 

Hadoop is open source implementation of mapreduce 

programming model which relies on its own Hadoop 

Distributed File System (HDFS). HDFS is designed 

for storing very large files with streaming data access 

patterns running on commodity hardware. At the heart 

of HDFS is a single Name Node a master server that 

manages the file system. The master node consists of 

task tracker, job tracker, name node and data node. A 

slave node acts as both a task tracker and data node. 

 

II. RELATED WORK 
 

Many parallel algorithms have been proposed to 

enhance the performance of the Apriori frequent 

itemset mining. In Apriori based frequent itemset 

mining [3] they proposed three algorithms namely 

single pass counting (SPC), fixed passes combined 

counting (FPC) and Dynamic pass combined counting 

(DPC). SPC finds out frequent k itemset at k-th pass of 

database. FPC finds out (k-1) and (k+1) and up to 

(k+m) itemset in a map reduce phase. The third 

algorithm DPC, considers the workloads of nodes and 

find out various length of frequent itemsets as possible 

in a map-reduce phase and also DPC calculates the 

candidate threshold and prevents the generation of 

many false positive candidates. It performs well when 

compared with the SPC and FPC.  

 

X.Lin proposed Mr. Apriori [4] algorithm which runs 

on a parallel Map/Reduce framework. Prune (Ck+1) 

function to remove the non frequent itemset from the 

transaction. Where this function eliminates 

redundancy execution and ck cannot be subset of 

frequent item sets. This algorithm first calculate 

frequent itemset for each map node as the time 

complexity with respect to transaction t, Number of  

transactions n , Number of item in the transactions m. 

In second task is to calculate frequent item set with an 

additional item by joining, sorting and eliminating the 

duplicated items in each map node. Finally similarity 

can be calculated at the reduce nodes and eliminate the 

frequencies that do not meet the minimum support. 

 

S. Hong, Z. Huaxuan, C.Shiping, and H.Chunyan [5] 

proposed improved FP growth algorithm which 

combines the sub-tree with same patterns which has 

high support count. Further it combines with 

mapreduce computing model MR-IFP (mapreduce-

improved FP). It uses the depth first method to mine 

the frequent itemsets and saves a great deal of space. 

Built cloud platform to implement the IFP based on 

linked list Therefore it achieves high efficiency and 

scalability. 

 

M. Liroz-Gistau, R. Akbarinia, D. Agrawal, E.Pacitti, 

and P. Valduriez [6] state that Map Reduce jobs are 

executed over distributed system composed of a name 

node and data nodes. Input is dividing into several 

splits and assigned to map tasks. MR-Part A 

partitioning technique is used for automatic 

partitioning of mapreduce input phase and a locality 

scheduling is done at the reduce tasks  simultaneously 

so it reduce the amount of data shuffling between map 

unit and reduce unit . 

 

L. Zhou, Z. Zhong , J. Chang [7] proposed a Balanced 

parallel FP growth (BPFP) uses two round of 
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mapreduce to parallelize FP growth. First phase 

divides entire mining task in to relatively even sub task 

to improve parallelization. The second phase divides 

all the load units in to several groups. It eliminates 

dependency between parallel tasks. In order to balance 

the load a work load of each mining unit is calculated 

and then fairly divides this unit into several groups. By 

using this balance metric BPFP achieves high 

parallelization. 

 

III. PROPOSED WORK 

 

3.1 Partitioning of Data 

 

Data partitioning is done using voronoi diagram based 

partitioning [8]. In this technique spaces are divided 

into number of parts. In prior a group of set which is 

referred as pivots (seeds) is chosen at preprocessing 

phase. For each pivot point there is a corresponding 

part consisting of all data points closer to it .The split 

regions for particular pivot are called voronoi cells. 

For a dataset D set of k pivots are selected then all 

objects in the Dataset D are partitioned into k disjoint 

sets (denoted as G1, G2,..Gk) and each object in D are 

assigned to the nearest pivot. 

 

3.2 Distance Metric 

 

In order to compute the similarity between the 

transactions Jaccard similarity is computed. A Jaccard 

similarity value 1 indicates two transactions are highly 

similar. The similarity between of  two transactions T1 

and T2 is given as below, 

 

           J (T1,T 2) = 
       

       
                                         

 

J(T1,T2) is a value in  between 0 to 1,if it is zero then 

row set is not equal, if it is 1 then the row set are same. 

 

3.3 K-means selection of pivots 

 

Pivot selection is the main process in partitioning the 

data. K-means strategy is used to select the pivots. It 

aims to partition m objects into k clusters. Given a set 

of objects (y1,y2…yk) are partitioned in to clusters 

c1,c2,.ck where each data points belong to a cluster for 

a particular mean. Pivot selection is carried out 

preprocessing phase. 

 

3.4 Partitioning Strategies 

 

The two partition strategies are MinHash and LSH-

Based partitioning in that MinHash is a basic 

foundation for Locality Sensitive Hashing.  

 

3.4.1 MinHash 

 

MinHash provides solution to determine  the similarity 

between two sets [9]. MinHashing technique is mainly 

for dimension reduction large sets are replaced by 

smaller sets called “signatures”. There are two phases 

to generate signatures. 

 

1) Characteristic matrix 

2) MinHash Signatures 

 

Characteristic matrix 

 

Characteristic matrix will be obtained from  FList 

(frequent one itemset List) and original dataset. Where 

column represent transaction and row denotes items in 

the transaction. For a given Dataset D= {T1, T2, .Tk}, 

which contains m items. If the item in the FList 

present in the transaction T1 then the item alone will be 

set as 1 otherwise it will be set as 0. Likewise the 

entire transaction in Dataset will be checked with 

FList and m (number of items) by n 

(number of rows) characteristic matrix of M will be 

obtained.  

 

3.4.2 MinHash Signatures 

 

Signature matrix will be constructed using 

characteristic matrix M for every item in the M 

generates hash function [10]. Initially the signature 

matrix value will be set as infinity after that if the 

transaction contains 1 then replace hash value in the 

signatures. Likewise for each transaction compute 

signature value. The characteristic matrix and 

signature matrix would consists of the same number of 
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columns but very less rows, thereby drastically 

reducing the dimensions. 

 

LSH-Based partitioning 

 

Based on the banding technique, the rows in the 

signature matrix are divided into (b x r) where b 

represents the number of bands. Each band consists of 

maximum r rows. For each band a hash function is 

defined. The function takes column of its 

corresponding band and hashes them to large number 

of buckets. We can use the same hash function. For a 

any hash family if any two sets  m1 and m2 satisfy the 

below conditions, then hash family is called (R, q, m1, 

m2). 

 

A) If ||m1-m2|| < R 

B) If ||m1-m2|| < cR 

 

Above condition is used to check similar sets are 

mapped in to the same buckets and dissimilar sets will 

be mapped in the individual bucket in hash table 

 

IV. IMPLEMENTATION 

  

Data partitioning phase consist of three phases. In 

preprocessing phase selection of k pivots will 

be done at the master node , which will be the input for 

second phase in mapreduce.  

 

A. First MapReduce job 

 

The first MapReduce phases discovers all frequent 

one-itemsets. The transaction in the dataset is 

partitioned into Data Nodes and items  in the 

transaction and items in the transaction are 

counted parallel. 

 
 

System Architecture 

 

 

Figure 1. system architecture of pfp 
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Figure 2. Overview of Data Partitioning Algorithm 
 

The input of Map tasks is a database, and the output of 

Reduce tasks is one frequent itemsets. The map input 

format will be <Long Writable offset, Text value> and 

the reduce output format will be in the format of <Text 

item, Long Writable count>  then the frequent one 

itemset count along with itemsets are stored in a file 

called F-List.     

 

B. Second MapReduce job 

 

Mapper 

 

First MapReduce output will be given as an input for 

the second phase in MapReduce. In second 

MapReduce phase sorting of frequent one itemset will 

be done using descending order and again it will be 

stored in a file F-List. By using this F-List signature 

matrix will be generated. Using k pivots similar 

transactions are grouped together and form a Group 

List with the corresponding unique group id (Gid). 

From the signature matrix LSH-Based partitioning is 

carried with corresponding Gid. 

Reducer 

 

Each reducer performs the local fp growth. Second 

mapreduce output will be used to generate frequent all 

patterns. fp growth while processing produce more 

dependent  transactions are  partition and it discovers 

the frequent transaction as final result. 

 

C. Third MapReduce job 

 

The last MapReduce job aggregates the result obtained 

from the second MapReduce job. Using the frequent 

pattern and generates candidate itemset for each 

itemsets and creates the final output. 

 

Algorithm 1 LSH-fp-growth 

 

Input: FList, k pivots, DBi; 

Output: Transactions for each Group id 

 

1: MAP function contain(key as offset and 

values as Databasei) 
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2: load FrequentList(FList), m pivots; 

3: Grouplist will be generated from the FList and 

m pivots 

4: for each Transaction in Database perform 

5: split the items in transaction and store it as 

items[] 

6: for every item in items[] perform 

7: if items is present in FList then store the item 

in b[]  

8: if end 

9: for end  

10: put the Generated-signature matrix(b[]) into 

arraylist of signaturematrix; 

11: For end 

12: For every ((column)i in signaturematrix) 

perform 

13: divide column of the signaturematrix   into B 

bands with r rows; 

14: Store the column in Hashbucket using 

hashmap 

15: For end 

16: if one  band of column in signaturematrix and 

pivot pk is mapped in to same bucket do 

17: Assign j to the Gid; 

18: Output contains Gid and new transaction tree 

of bi 

19: If End  

20: For  each Grouplist (transaction≠i) do 

21: if column in sigmatrix contains item in 

Grouplist then 

22: Assign Gid to t; 

23: Output contains Gid and new transaction tree 

of bi 

24: If end 

25: For end 

26: Function end 

 

Input: transactions corresponding to each Gid; 

Output: frequent k-itemsets 

       28:    Reduce contains key as Groupid and values  

as  database 

29:    Load Grouplists;  

30:    perform Grouplist according to Gid 

31:    perform local fp growth 

32:    for all (Transaction in Database Gid) do  

33:    build FP tree for the transaction 

34:    for end 

35:    for all element in b do 

36:    Define maxheap with the size K 

37:    perform TopKFpgrowth in maxheap 

       38:    for all transaction in TopKFpgrowth 

39: Output contains final transaction and      

support 

       40:   for end 

       41:   for end 

       42:   function end 

 

In LSH Algorithm each map phase takes transaction as 

pair <Long writable offset, Text record> then FList 

and k pivots are loaded initially. Each item in the 

transactions is split and compares with the FList items 

and stored in an array list b. From the b characteristic 

matrix and signature matrix will be generated. The 

signature matrix will be divide in to B bands each of 

which contains r rows (B x r= l). Then the column in 

the signature matrix are inserted in to the number of 

hash bucket if the sets are similar then it will be 

hashed to the same bucket. Assume that the similarity 

between two columns of signature matrix is d then 

they both transactions are considered similar. If a 

column in the signature matrix shares the similar 

bucket with a band B in pivot p then it will be denoted 

as a pair< pk, Ti>. Finally the map output will be a pair 

of < pk, Ti> and in reducer fp growth will be 

performed to generate frequent patterns. 

 

ALGORITHM 2 Creation of SIGNATURE-

MATRIX 

 

Input: item transaction matrix of b[]; 

Output: generated signature matrix b[] 

1: Function to generate signature matrix of b[]  

2: For N number of hashfunction  

3: Assign  every value in MinHash to max 

integer; 

4: For end 

5: For each(j=0;j<numberOfhashfunction;j++) 

perform 

6: For every element in the b[ ] perform 

7: Convert element to integer and store in value 
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8: Convert byte to hash of value and perform left 

shift 24 <- bytetohash[1]; 

9: Convert byte to hash of value and perform left 

shift 16 <- bytetohash[2]; 

10: Convert byte to hash of value and perform left 

shift 8 <- bytetohash[3]; 

11: Convert byte to hash of value <-bytetohash[4]; 

12: hashindex←hashfunction[j]*hash(bytesToHas

h); 

13: if( minhashvalue[j] ) > hashindex then 

14: minhashvalues[j]=hashindex; 

15:  if end 

16: For end 

17: For end 

18: Function end 

 

Algorithm 2 describes about the generation of 

signature matrix. It is really difficult to create 

signature matrix from the large characteristic matrix. 

In order to avoid the complexity Minwise Independent 

permutation technique [10] is used to speed up the 

process. So the high dimensional matrix will be 

reduced to low dimensional matrix and time 

complexity is greatly reduced. 

 

V. DATASET DESCRIPTION 
 

We generated a synthentic dataset using IBM quest 

market-basket  data generator [11], initially the 

average transaction is set as 8 after that vary the 

average transaction and number of items to meet the 

various need in the experiment. The characteristic of 

our dataset are described in Table1.  

 

Table 1:DataSet 

 

Average 

length 

Item in 

transaction 

Average size of the 

transaction 

8 1000  6.5B 

10 4000 17.5B 

40 10000 31.5B 

60 10000 43.6B 

85 10000 63.7B 

 

VI. Experimental Evaluation 
 

We evaluate the performance of partitioning technique 

in Hadoop equipped with 1  name node and 8 data 

nodes. Each node has an Intel Pentium-4.3.0 GHz 

processor 256 MB main memory and runs on the 

Linux 2.3 OS, on which java JDK 1.7.0 and Hadoop 

2.1  are installed. We use the default replication factor 

3 as a hadoop configuration parameter. 

 

VII. PERFORMANCE EVALUATION 

 

7.1 Impact of pivot Number 

 

We vary the number of pivot point from 20 to 100 and 

obtain the running time. Our partition technique 

achieve overall performance when compared to pfp 

technique. if we increase pivot number then Running 

time get increased. When the pivot number is 60 the 

running time is  minimized. 

 

 

 
 

Figure 3. Impact of number of pivots 
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7.2 Impact of minimum support count 

 

 
 

Figure 4. Impact of minimum support count 
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