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ABSTRACT 
 

In this paper, we state and prove some common fixed point theorems in fuzzy metric spaces. These theorems 

generalize and improve known results (see [1]). 
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I. INTRODUCTION 

 

In 1965, the theory of fuzzy sets was investigated by 

Zadeh [2]. In 1981, Heilpern [3] first introduced the 

concept of fuzzy contractive mappings and proved a 

fixed point theorem for these mappings in metric linear 

spaces. His result is a generalization of the fixed point 

theorem for point-to-set maps of Nadler [4]. Therefore, 

several fixed point theorems for types of fuzzy 

contractive mappings have appeared (see, for 

instance [1,5–9]). 

 

In this paper, we state and prove some common fixed 

point theorems in fuzzy metric spaces. These theorems 

generalize and improve known results (see [1]). 

 

II. METHODS AND MATERIAL 

 

Basic Preliminaries 

 

The definitions and terminologies for further discussions 

are taken from Heilpern [3]. Let (X, d) be a metric linear 

space. A fuzzy set in X is a function with domain X and 

values in [0, 1]. If A is a fuzzy set and x ∈ X, then the 

function-value A(x) is called the grade of 

membership of x in A. The collection of all fuzzy sets 

in X is denoted by I(X). 

 

Let A∈I(X) and α ∈ [0, 1]. The α-level set of A, denoted 

by Aα, is defined by 

 

Aα={x:A(x)⩾α} if α∈(0,1], A0= 0}>A(x):{x , 

whenever B  is the closure of set (non-fuzzy) B. 

 

Definition 2.1 

A fuzzy set A in X is an approximate quantity iff its α-

level set is a nonempty compact convex subset (non-

fuzzy) of X for each α ∈ [0, 1] and supx∈X A(x) = 1. 

The set of all approximate quantities, denoted by W(X), 

is a subcollection of I(X). 

 

Definition 2.2 

Let A, B ∈ W(X), α ∈ [0, 1] and CP(X) be the set of all 

nonempty compact subsets of X. Then 

pα(A, B)=
 ByAx  ,

inf d(x, y), δα(A, B) = 
 ByAx  ,

sup d(x, y) 

and Dα(A, B)=H(Aα, Bα), 

where H is the Hausdorff metric between two sets in 

the collection CP(X). We define the following functions 

p(A, B)=


sup  pα(A, B), δ(A, B)= 


sup δα(A,B) and D(A, 

B)= 


sup Dα(A, B). 

It is noted that pα is nondecreasing function of α. 

 

Definition 2.3 

Let A, B ∈ W(X). Then A is said to be more 

accurate than B (or B includes A), denoted by A ⊂ B, 

iff A(x) ⩽ B(x) for each x ∈ X. 

The relation ⊂ induces a partial order on W(X). 

 

Definition 2.4 

Let X be an arbitrary set and Y  be a metric linear 

space. F is said to be a fuzzy mapping iff  F is a 

mapping from the set X into W(Y), i.e., F(x) ∈ W(Y) for 

each x ∈ X. 

The following proposition is used in the sequel. 
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Proposition 2.1 

 

([4]). If A, B ∈ CP(X) and a ∈ A, then there exists b ∈ B 

such that d(a, b) ⩽ H(A, B). 

Following Beg and Ahmed [10], let (X, d) be a metric 

space. We consider a subcollection of I(X) denoted by 

W∗(X). Each fuzzy set A ∈ W∗(x), its α-level set is a 

nonempty compact subset (non-fuzzy) of X for each 

α ∈ [0, 1]. It is obvious that each element A ∈ W(X) 

leads to A ∈ W∗(X) but the converse is not true. 

The authors [10] introduced the improvements of the 

lemmas in Heilpern [3] as follows. 

Lemma 2.1 

If {x0} ⊂ A for each A ∈ W∗(X) and x0 ∈ X, then 

pα(x0, B) ⩽ Dα(A, B) for each B ∈ W∗(X). 

Lemma 2.2 

pα(x, A) ⩽ d(x, y) + pα(y, A) for all x, y ∈ X and 

A ∈ W∗(X). 

Lemma 2.3 

Let x ∈ X, A ∈ W∗(X) and {x} be a fuzzy set with 

membership function equal to a characteristic function 

of the set {x}. Then {x} ⊂ A if and only if pα(x, A) = 0 

for each α ∈ [0, 1]. 

Lemma 2.4 

Let (X, d) be a complete metric space, F: X → W∗(X) be 

a fuzzy map and x0 ∈ X. Then there exists x1 ∈ X such 

that {x1} ⊂ F(x0). 

 

Remark 2.1 

It is clear that Lemma 2.4 is a generalization of 

corresponding lemma in Arora and Sharma [1] and 

Proposition 3.2 in Lee and Cho [7]. 

Let Ψ  be the family of real lower semi-continuous 

functions F: [0, ∞)
6
 → R, R ≔ the set of all real numbers, 

satisfying the following conditions: 

(ψ1) F is non-increasing in 3rd, 4th, 5th, 6th 

coordinate variable, 

(ψ2) there exists h ∈ (0, 1) such that for every u, v ⩾ 0 

with 

(ψ21) F(u, v, v, u, u + v, 0) ⩽ 0 or  

(ψ22) F(u, v, u, v, 0, u + v) ⩽ 0, we have u ⩽ h v, and 

(ψ3) F(u, u, 0, 0, u, u) > 0 for all u > 0. 

 

III. RESULTS AND DISCUSSION 
 

In 2000, Arora and Sharma [1] proved the following 

result. 

Theorem 3.1 

Let (X, d) be a complete metric space and T1, T2 be fuzzy 

mappings from X into W(X). If there is a constant q, 

0 ⩽ q < 1, such that, for each x, y ∈ X, 

D(T1(x), T2(y))⩽q max{d(x, y), p(x,T1(x)), p(y,T2(y)), 

p(x,T2(y)), p(y,T1(x))}, 

then there exists z ∈ X such that {z} ⊂ T1(z) and 

{z} ⊂ T2(z). 

 

Remark 3.1 

If there is a constant q, 0 ⩽ q < 1, such that, for 

each x, y ∈ X, 

D(T1(x), T2(y))⩽q max{d(x, y), p(x,T1(x)), 

p(y,T2(y))},    (1) 
 

then the conclusion of  Theorem 3.1  remains valid. This 

result is considered as a special case of  Theorem 3.1. 

Beg and Ahmed [10] generalized Theorem 3.1 as 

follows. 

Theorem 3.2 

Let (X, d) be a complete metric space and T1, T2 be fuzzy 

mappings from X into W∗(X). If there is a F ∈ Ψ such 

that, for all x, y ∈ X, 

F(D(T1(x), T2(y)), d(x, y), p(x, T1(x)), p(y, T2(y)), 

p(x, T2(y)), p(y, T1(x)))⩽0, (2) 
 

then there exists z ∈ X such that {z} ⊂ T1(z) and 

{z} ⊂ T2(z). 

 

We give another different generalization of Theorem 

3.1 with contractive condition (1) as follows. 

Theorem 3.3 

Let (X, d) be a complete metric space and T1, T2 be fuzzy 

mappings from X into W∗(X). Assume that there exist c1, 

c2, c3 ∈ [0, ∞) with c1 + 2c2 < 1 and c2 + c3 < 1 such that, 

for all x, y ∈ X, 

D
2
(T1(x), T2(y))⩽c1max{d

2
(x, y), p

2
(x, T1(x)), p

2
(y, 

T2(y))} +c2max{p(x, T1(x))p(x, T2(y)), p(y, 

http://www.sciencedirect.com/science/article/pii/S1110256X13000588#b0020
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T1(x))p(y, T2(y))} +c3p(x, T2(y))p(y, T1(x)).  

 (3) 

Then there exists z ∈ X such that {z} ⊂ T1(z) and 

{z} ⊂ T2(z). 

 

Proof 

Let x0 be an arbitrary point in X. Then by Lemma 2.4, 

there exists an element x1 ∈ X such that {x1} ⊂ T1(x0). 

For x1 ∈ X, (T2(x1))1 is nonempty compact subset of X. 

Since (T1(x0))1, (T2(x1))1 ∈ CP(X) and x1 ∈ (T1(x0))1, 

then Proposition 2.1 asserts that there 

exists x2 ∈ (T2(x1))1 such that d(x1,x2) ⩽ D1(T1(x0), T2(x1)). 

So, we obtain from the 

inequality D(A, B) ⩾ Dα(A, B) ∀α ∈ [0, 1] that 

d
2
(x1, x2)⩽D1

2
(T1(x0), T2(x1)) 

⩽D
2
(T1(x0), T2(x1)) 

⩽c1max{d
2
(x0, x1), p

2
(x0,T1(x0)), p

2
(x1, T2(x1))} 

+c2max{p(x0, T1(x0))p(x0, T2(x1)), p(x1, 

T1(x0))p(x1, T2(x1))} 

+c3p(x0, T2(x1))p(x1, T1(x0)) 

+c1max{d
2
(x0, x1), d

2
(x1, x2)}+c2d(x0, x1)[d(x0, 

x1)+d(x1, x2)]. 

If d(x1, x2) > d(x0, x1), then we have 

d
2
(x1, x2) ≤ (c1+2c2) d

2
(x1, x2), 

which is a contradiction. Thus, 

d(x1, x2) ≤ hd(x0, x1), 

where h=c1+2c2<1. Similarly, one can deduce that 

d(x2, x3) ≤ hd(x1, x2). 

By induction, we have a sequence (xn) of points 

in X such that, for all n ∈  N ∪  {0}, 

{x2n+1}T1(x2n), {x2n+2}T2(x2n+1). 

It follows by induction that d(xn, xn+1) ≤ h
n
d(x0, x1). Since 

d(xn, xm) ≤ d(xn, xn+1)+d(xn+1, xn+2)+…+d(xm-1, xm) ≤ 

h
n
d(x0, x1)+h

n+1
d(x0, x1)+…+h

m-1
d(x0, x1) ≤ 

h

h
n

1
d(x0, 

x1), 

then limn, m→∞ d(xn, xm) = 0. Therefore, (xn) is a Cauchy 

sequence. Since X is complete, then there 

exists z ∈  X such that limn→∞ xn = z. Next, we show that 

{z} ⊂ Ti(z), i = 1, 2. Now, we get from Lemmas 2.1 and 

2.2 that 

 

pα(z,T2(z)) ≤ d(z, x2n+1)+pα(x2n+1, T2(z)) ≤ d(z, 

x2n+1)+Dα(T1(x2n), T2(z)), 

for each α ∈  [0, 1]. Taking supremum on α in the last 

inequality, we obtain that 

 

p(z,T2(z)) ≤ d(z, x2n+1)+D(T1(x2n), T2(z)). 

     (4) 

 

From the inequality (3), we have that 

D2(T1(x2n),T2(z)) ≤ c1max{d
2
(x2n, z), p

2
(x2n, T1(x2n)), p

2
(z, 

T2(z))} 

+c2max{p(x2n, T1(x2n))p(x2n,T2(z)), p(z,T1(x2n))p(z,T2(z))} 

+c3p(x2n,T2(z))p(z,T1(x2n)) 

≤ c1max{d
2
(x2n, z), d

2
(x2n, x2n+1), p

2
(z, T2(z))} 

+c2max{d(x2n, x2n+1)p(x2n, T2(z)), d(z,x2n+1)p(z,T2(z))} 

+c3p(x2n, T2(z))d(z,x2n+1).   

      (5) 

Letting n → ∞ in the inequalities (4) and (5), it follows 

that 

p(z,T2(z)) ≤ c1p(z,T2(z)). 

Since c1<1, we see that p(z, T2(z)) = 0. So, we get 

from Lemma 2.3 that {z} ⊂ T2(z). Similarly, one can be 

shown that {z} ⊂ T1(z). 

 

Remark 3.2 

(I) Condition (3) is not deducible from 

condition (2) since the function F from 

[0, ∞)
6
 into [0, ∞) defined as 

 

F(t1,t2,t3,t4,t5,t6)=t1
2
-c1max t2

2
,t3

2
,t4

2
-c2max{t3t5, t6t4}-c3t5t6, 

for all t1, t2, t3, t4, t5, t6 ∈  [0, ∞), where c1, c2, c3 ∈  [0, ∞) 

with c1 + 2c2 < 1 and c2 + c3 < 1, does not generally 

satisfy condition (ψ3). Indeed, we have that 

 

F(u, u, 0, 0, u, u)=u
2
-c1u

2
-c3u

2
, for all u > 0 and does not 

imply that F(u, u, 0, 0, u, u)  > 0 for all u > 0. 

 

It suffices to consider c1=
4

3
, c2=

9

1
, c3=

2

1
 and 

then c1 + 2c2 < 1 and c2 + c3 < 1 

but F(u, u, 0, 0, u, u) < 0 for all u > 0. 

Therefore, Theorems 3.2 and 3.3 are two different 

generalizations of Theorem 3.1 with contractive 

condition (1). 

(II) If there exist c1, c2, c3 ∈ [0, ∞) 

with c1 + 2c2 < 1 and c2 + c3 < 1 such that, for 

all x, y ∈ X, 
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δ
2
(T1(x), T2(y)) ≤ c1max{d

2
(x, y), p

2
(x,T1(x)), p

2
(y,T2(y))} 

+c2max{p(x,T1(x))p(x,T2(y)), p(y,T1(x))p(y,T2(y))} 

+c3p(x,T2(y))p(y,T1(x)), 

 

then the conclusion of Theorem 3.3 remains valid. This 

result is considered as a special case of Theorem 

3.3 because D(F1(x), F2(y)) ≤ δ(F1(x), F2(y)). Moreover, 

this result generalizes Theorem 3.3 of Park and 

Jeong [8]. 

 

Theorem 3.4 

Let (Tn: n  N ∪  {0}) be a sequence of fuzzy mappings 

from a complete metric space (X, d) into W
 *
(X). Assume 

that there exist c1, c2, c3 ∈  [0, ∞) with c1 + 2c2 < 1 and 

c2 + c3 < 1 such that, for all x, y ∈  X, 

D
2
(T0(x),Tn(y)) ≤ c1max{d

2
(x, y),p

2
(x,T0(x)),p

2
(y,Tn(y))} 

+c2max{p(x,T0(x))p(x,Tn(y)),p(y,T0(x))p(y,Tn(y))} 

+c3p(x,Tn(y))p(y,T0(x))  ∀ n∈N. 

Then there exists a common fixed point of the family (Tn: 

n  N ∪  {0}). 

 

Proof 

Putting T1 = T0 and T2 = Tn ∀ n ∈  N in Theorem 3.3. 

Then, there exists a common fixed point of the family 

(Tn: n ∈  N ∪  {0}). 
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