

# **Fixed Point Theorems in Fuzzy Metric Spaces**

Dr. C. Vijender

Department of Mathematics, Sreenidhi Institute of Sciece and Technology, Hyderabad, Andhra Pradesh, India

## ABSTRACT

In this paper, we state and prove some common fixed point theorems in fuzzy metric spaces. These theorems generalize and improve known results (see [1]).

Keywords : Fixed point, Fuzzy metric spaces, Fuzzy mapping.

## I. INTRODUCTION

In 1965, the theory of fuzzy sets was investigated by Zadeh [2]. In 1981, Heilpern [3] first introduced the concept of fuzzy contractive mappings and proved a fixed point theorem for these mappings in metric linear spaces. His result is a generalization of the fixed point theorem for point-to-set maps of Nadler [4]. Therefore, several fixed point theorems for types of fuzzy contractive mappings have appeared (see, for instance [1,5–9]).

In this paper, we state and prove some common fixed point theorems in fuzzy metric spaces. These theorems generalize and improve known results (see [1]).

## **II. METHODS AND MATERIAL**

## **Basic Preliminaries**

The definitions and terminologies for further discussions are taken from Heilpern [3]. Let (X, d) be a metric linear space. A **fuzzy set** in X is a function with domain X and values in [0, 1]. If A is a fuzzy set and  $x \in X$ , then the function-value A(x) is called the **grade of membership** of x in A. The collection of all fuzzy sets in X is denoted by I(X).

Let  $A \in I(X)$  and  $\alpha \in [0, 1]$ . The *\alpha*-level set of *A*, denoted by  $A_{\alpha}$ , is defined by

$$A_{\alpha} = \{x: A(x) \ge \alpha\} \text{ if } \alpha \in (0,1], A_0 = \overline{\{x: A(x) > 0\}},$$

whenever  $\overline{B}$  is the closure of set (non-fuzzy) *B*.

## **Definition 2.1**

A fuzzy set *A* in *X* is an **approximate quantity** iff its  $\alpha$ level set is a nonempty compact convex subset (nonfuzzy) of *X* for each  $\alpha \in [0, 1]$  and  $sup_{x \in X}A(x) = 1$ . The set of all approximate quantities, denoted by W(X), is a subcollection of I(X).

## **Definition 2.2**

Let  $A, B \in W(X), \alpha \in [0, 1]$  and CP(X) be the set of all nonempty compact subsets of *X*. Then

$$p_{\alpha}(A, B) = \inf_{x \in A_{\alpha}, y \in B_{\alpha}} d(x, y), \ \delta_{\alpha}(A, B) = \sup_{x \in A_{\alpha}, y \in B_{\alpha}} d(x, y)$$

and  $D_{\alpha}(A, B)=H(A_{\alpha}, B_{\alpha})$ ,

where H is the **Hausdorff metric** between two sets in the collection CP(X). We define the following functions

$$p(A, B) = \sup_{\alpha} p_{\alpha}(A, B), \ \delta(A, B) = \sup_{\alpha} \delta_{\alpha}(A, B) \text{ and } D(A, B)$$
$$B) = \sup_{\alpha} D_{\alpha}(A, B).$$

It is noted that  $p_{\alpha}$  is nondecreasing function of  $\alpha$ .

## **Definition 2.3**

Let  $A, B \in W(X)$ . Then A is said to be **more** accurate than B (or B includes A), denoted by  $A \subset B$ , iff  $A(x) \leq B(x)$  for each  $x \in X$ .

The relation  $\subset$  induces a partial order on W(X).

## **Definition 2.4**

Let *X* be an arbitrary set and *Y* be a metric linear space. *F* is said to be a **fuzzy mapping** iff *F* is a mapping from the set *X* into W(Y), i.e.,  $F(x) \in W(Y)$  for each  $x \in X$ .

The following proposition is used in the sequel.

## **Proposition 2.1**

([4]). If  $A, B \in CP(X)$  and  $a \in A$ , then there exists  $b \in B$  such that  $d(a, b) \leq H(A, B)$ .

Following Beg and Ahmed [10], let (X, d) be a metric space. We consider a subcollection of I(X) denoted by  $W^*(X)$ . Each fuzzy set  $A \in W^*(x)$ , its  $\alpha$ -level set is a nonempty compact subset (non-fuzzy) of X for each  $\alpha \in [0, 1]$ . It is obvious that each element  $A \in W(X)$ leads to  $A \in W^*(X)$  but the converse is not true.

The authors [10] introduced the improvements of the lemmas in Heilpern [3] as follows.

### Lemma 2.1

If  $\{x_0\} \subset A$  for each  $A \in W^*(X)$  and  $x_0 \in X$ , then  $p_a(x_0, B) \leq D_a(A, B)$  for each  $B \in W^*(X)$ .

### Lemma 2.2

 $p_a(x, A) \leq d(x, y) + p_a(y, A)$  for all  $x, y \in X$  and  $A \in W^*(X)$ .

### Lemma 2.3

Let  $x \in X$ ,  $A \in W^*(X)$  and  $\{x\}$  be a fuzzy set with membership function equal to a characteristic function of the set  $\{x\}$ . Then  $\{x\} \subset A$  if and only if  $p_a(x, A) = 0$ for each  $\alpha \in [0, 1]$ .

#### Lemma 2.4

Let (X, d) be a complete metric space,  $F: X \to W^*(X)$  be a fuzzy map and  $x_0 \in X$ . Then there exists  $x_1 \in X$  such that  $\{x_1\} \subset F(x_0)$ .

#### Remark 2.1

It is clear that <u>Lemma 2.4</u> is a generalization of corresponding lemma in Arora and Sharma [1] and Proposition 3.2 in Lee and Cho [7].

Let  $\Psi$  be the family of real lower semi-continuous functions  $F: [0, \infty)^6 \to R, R :=$  the set of all real numbers, satisfying the following conditions:

 $(\psi_1)$  *F* is non-increasing in 3rd, 4th, 5th, 6th coordinate variable,

 $(\psi_2)$  there exists  $h \in (0, 1)$  such that for every  $u, v \ge 0$  with

 $(\psi_{21}) F(u, v, v, u, u + v, 0) \leq 0$  or

 $(\psi_{22}) F(u, v, u, v, 0, u + v) \leq 0$ , we have  $u \leq h v$ , and  $(\psi_3) F(u, u, 0, 0, u, u) > 0$  for all u > 0.

#### **III. RESULTS AND DISCUSSION**

In 2000, Arora and Sharma [1] proved the following result.

#### Theorem 3.1

Let (X, d) be a complete metric space and  $T_1$ ,  $T_2$  be fuzzy mappings from X into W(X). If there is a constant q,  $0 \leq q < 1$ , such that, for each x,  $y \in X$ ,

$$\begin{split} D(T_1(x), \ T_2(y)) \leqslant &q \ \max\{d(x, \ y), \ p(x, T_1(x)), \ p(y, T_2(y)), \\ p(x, T_2(y)), \ p(y, T_1(x))\}, \end{split}$$

then there exists  $z \in X$  such that  $\{z\} \subset T_1(z)$  and  $\{z\} \subset T_2(z)$ .

## Remark 3.1

If there is a constant q,  $0 \le q < 1$ , such that, for each  $x, y \in X$ ,

$$D(T_1(x), T_2(y)) \leq q \max\{d(x, y), p(x, T_1(x)), p(y, T_2(y))\},$$
(1)

then the conclusion of <u>Theorem 3.1</u> remains valid. This result is considered as a special case of <u>Theorem 3.1</u>. Beg and Ahmed [10] generalized <u>Theorem 3.1</u> as follows.

### Theorem 3.2

Let (X, d) be a complete metric space and  $T_1$ ,  $T_2$  be fuzzy mappings from X into  $W^*(X)$ . If there is a  $F \in \Psi$  such that, for all  $x, y \in X$ ,

 $F(D(T_1(x), T_2(y)), d(x, y), p(x, T_1(x)), p(y, T_2(y)), p(x, T_2(y)), p(y, T_1(x))) \leq 0, \quad (2)$ 

then there exists  $z \in X$  such that  $\{z\} \subset T_1(z)$  and  $\{z\} \subset T_2(z)$ .

We give another different generalization of <u>Theorem</u> <u>3.1</u> with contractive condition (1) as follows.

#### Theorem 3.3

Let (X, d) be a complete metric space and  $T_1$ ,  $T_2$  be fuzzy mappings from X into  $W^*(X)$ . Assume that there exist  $c_1$ ,  $c_2$ ,  $c_3 \in [0, \infty)$  with  $c_1 + 2c_2 < 1$  and  $c_2 + c_3 < 1$  such that, for all  $x, y \in X$ ,

 $D^{2}(T_{1}(x), T_{2}(y)) \leq c_{1} \max \{d^{2}(x, y), p^{2}(x, T_{1}(x)), p^{2}(y, T_{2}(y))\} + c_{2} \max \{p(x, T_{1}(x))p(x, T_{2}(y)), p(y, T_{2}(y))\}$ 

 $T_1(x)p(y, T_2(y)) + c_3p(x, T_2(y))p(y, T_1(x)).$ 

(3)

Then there exists  $z \in X$  such that  $\{z\} \subset T_1(z)$  and  $\{z\} \subset T_2(z)$ .

#### Proof

Let  $x_0$  be an arbitrary point in X. Then by Lemma 2.4, there exists an element  $x_1 \in X$  such that  $\{x_1\} \subset T_1(x_0)$ . For  $x_1 \in X$ ,  $(T_2(x_1))_1$  is nonempty compact subset of X. Since  $(T_1(x_0))_1$ ,  $(T_2(x_1))_1 \in CP(X)$  and  $x_1 \in (T_1(x_0))_1$ , then Proposition 2.1 asserts that there exists  $x_2 \in (T_2(x_1))_1$  such that  $d(x_1,x_2) \leq D_1(T_1(x_0), T_2(x_1))$ . So, we obtain from the inequality  $D(A, B) \geq D_a(A, B) \forall a \in [0, 1]$  that

$$\begin{aligned} d^{2}(x_{1}, x_{2}) &\leq D_{1}^{2}(T_{1}(x_{0}), T_{2}(x_{1})) \\ &\leq D^{2}(T_{1}(x_{0}), T_{2}(x_{1})) \\ &\leq c_{1} \max \{ d^{2}(x_{0}, x_{1}), p^{2}(x_{0}, T_{1}(x_{0})), p^{2}(x_{1}, T_{2}(x_{1})) \} \\ &+ c_{2} \max \{ p(x_{0}, T_{1}(x_{0})) p(x_{0}, T_{2}(x_{1})), p(x_{1}, T_{1}(x_{0})) p(x_{1}, T_{2}(x_{1})) \} \\ &+ c_{3} p(x_{0}, T_{2}(x_{1})) p(x_{1}, T_{1}(x_{0})) \\ &+ c_{1} \max \{ d^{2}(x_{0}, x_{1}), d^{2}(x_{1}, x_{2}) \} + c_{2} d(x_{0}, x_{1}) [d(x_{0}, x_{1}) + d(x_{1}, x_{2})]. \end{aligned}$$
If  $d(x_{1}, x_{2}) > d(x_{0}, x_{1})$ , then we have

 $d^{2}(x_{1}, x_{2}) \leq (c_{1}+2c_{2}) d^{2}(x_{1}, x_{2}),$ which is a contradiction. Thus,  $d(x_{1}, x_{2}) \leq hd(x_{0}, x_{1}),$ where  $h=c_{1}+2c_{2}<1$ . Similarly, one can deduce that  $d(x_{2}, x_{3}) \leq hd(x_{1}, x_{2}).$ By induction, we have a sequence  $(x_{n})$  of points

in X such that, for all  $n \in N \cup \{0\}$ ,

 $\{x_{2n+1}\}T_1(x_{2n}), \{x_{2n+2}\}T_2(x_{2n+1}).$ It follows by induction that  $d(x_n, x_{n+1}) \le h^n d(x_0, x_1)$ . Since

$$\begin{aligned} d(x_n, x_m) &\leq d(x_n, x_{n+1}) + d(x_{n+1}, x_{n+2}) + \ldots + d(x_{m-1}, x_m) &\leq \\ h^n d(x_0, x_1) + h^{n+1} d(x_0, x_1) + \ldots + h^{m-1} d(x_0, x_1) &\leq \frac{h^n}{1-h} d(x_0, x_1), \end{aligned}$$

then  $\lim_{n, m\to\infty} d(x_n, x_m) = 0$ . Therefore,  $(x_n)$  is a Cauchy sequence. Since *X* is complete, then there exists  $z \in X$  such that  $\lim_{n\to\infty} x_n = z$ . Next, we show that  $\{z\} \subset T_i(z), i = 1, 2$ . Now, we get from Lemmas 2.1 and 2.2 that

 $\begin{array}{lll} p_{\alpha}(z,T_{2}(z)) & \leq & d(z, \quad x_{2n+1}) + p_{\alpha}(x_{2n+1}, \quad T_{2}(z)) & \leq & d(z, \\ x_{2n+1}) + D_{\alpha}(T_{1}(x_{2n}), \ T_{2}(z)), \end{array}$ 

for each  $\alpha \in [0, 1]$ . Taking supremum on  $\alpha$  in the last inequality, we obtain that

$$p(z, T_2(z)) \le d(z, x_{2n+1}) + D(T_1(x_{2n}), T_2(z)).$$
(4)

(5)

From the inequality (3), we have that  $D_2(T_1(x_{2n}), T_2(z)) \le c_1 \max \{d^2(x_{2n}, z), p^2(x_{2n}, T_1(x_{2n})), p^2(z, T_2(z))\}$   $+c_2 \max \{p(x_{2n}, T_1(x_{2n}))p(x_{2n}, T_2(z)), p(z, T_1(x_{2n}))p(z, T_2(z))\}$   $+c_3 p(x_{2n}, T_2(z))p(z, T_1(x_{2n}))$   $\le c_1 \max \{d^2(x_{2n}, z), d^2(x_{2n}, x_{2n+1}), p^2(z, T_2(z))\}$   $+c_2 \max \{d(x_{2n}, x_{2n+1})p(x_{2n}, T_2(z)), d(z, x_{2n+1})p(z, T_2(z))\}$  $+c_3 p(x_{2n}, T_2(z))d(z, x_{2n+1}).$ 

Letting  $n \to \infty$  in the inequalities (4) and (5), it follows that  $p(z,T_2(z)) \le c_1 p(z,T_2(z)).$ 

Since  $c_1 < 1$ , we see that  $p(z, T_2(z)) = 0$ . So, we get from Lemma 2.3 that  $\{z\} \subset T_2(z)$ . Similarly, one can be shown that  $\{z\} \subset T_1(z)$ .

#### Remark 3.2

(I) Condition (3) is not deducible from condition (2) since the function F from  $[0, \infty)^6$  into  $[0, \infty)$  defined as

F(t<sub>1</sub>,t<sub>2</sub>,t<sub>3</sub>,t<sub>4</sub>,t<sub>5</sub>,t<sub>6</sub>)=t<sub>1</sub><sup>2</sup>-c<sub>1</sub>max t<sub>2</sub><sup>2</sup>,t<sub>3</sub><sup>2</sup>,t<sub>4</sub><sup>2</sup>-c<sub>2</sub>max {t<sub>3</sub>t<sub>5</sub>, t<sub>6</sub>t<sub>4</sub>}-c<sub>3</sub>t<sub>5</sub>t<sub>6</sub>, for all  $t_1$ ,  $t_2$ ,  $t_3$ ,  $t_4$ ,  $t_5$ ,  $t_6 \in [0, \infty)$ , where  $c_1$ ,  $c_2$ ,  $c_3 \in [0, \infty)$ with  $c_1 + 2c_2 < 1$  and  $c_2 + c_3 < 1$ , does not generally satisfy condition ( $\psi_3$ ). Indeed, we have that

F(u, u, 0, 0, u, u)= $u^2-c_1u^2-c_3u^2$ , for all u > 0 and does not imply that F(u, u, 0, 0, u, u) > 0 for all u > 0.

It suffices to consider  $c_1 = \frac{3}{4}$ ,  $c_2 = \frac{1}{9}$ ,  $c_3 = \frac{1}{2}$  and then  $c_1 + 2c_2 < 1$  and  $c_2 + c_3 < 1$ but F(u, u, 0, 0, u, u) < 0 for all u > 0. Therefore, Theorems 3.2 and 3.3 are two different generalizations of Theorem 3.1 with contractive condition (1).

(II) If there exist  $c_1, c_2, c_3 \in [0, \infty)$ with  $c_1 + 2c_2 < 1$  and  $c_2 + c_3 < 1$  such that, for all  $x, y \in X$ ,  $\delta^2(T_1(x), T_2(y)) \le c_1 \max \{d^2(x, y), p^2(x, T_1(x)), p^2(y, T_2(y))\}$  [6]. R.K. Bose, D. Sahani Fuzzy mappings and fixed  $+c_2 \max \{p(x,T_1(x))p(x,T_2(y)), p(y,T_1(x))p(y,T_2(y))\}$  $+c_{3}p(x,T_{2}(y))p(y,T_{1}(x)),$ 

then the conclusion of Theorem 3.3 remains valid. This result is considered as a special case of Theorem <u>3.3</u> because  $D(F_1(x), F_2(y)) \le \delta(F_1(x), F_2(y))$ . Moreover, this result generalizes Theorem 3.3 of Park and Jeong [8].

### Theorem 3.4

Let  $(T_n: n \ N \cup \{0\})$  be a sequence of fuzzy mappings from a complete metric space (X, d) into  $W^*(X)$ . Assume that there exist  $c_1, c_2, c_3 \in [0, \infty)$  with  $c_1 + 2c_2 < 1$  and  $c_2 + c_3 < l$  such that, for all  $x, y \in X$ ,

 $D^{2}(T_{0}(x),T_{n}(y)) \leq c_{1}\max\{d^{2}(x, y),p^{2}(x,T_{0}(x)),p^{2}(y,T_{n}(y))\}$  $+c_2 \max \{p(x,T_0(x))p(x,T_n(y)),p(y,T_0(x))p(y,T_n(y))\}$  $+c_3p(x,T_n(y))p(y,T_0(x)) \forall n \in \mathbb{N}.$ Then there exists a common fixed point of the family  $(T_n)$ :

#### Proof

 $n N \cup \{0\}$ ).

Putting  $T_1 = T_0$  and  $T_2 = T_n \forall n \in N$  in Theorem 3.3. Then, there exists a common fixed point of the family  $(T_n: n \in N \cup \{0\}).$ 

#### **IV. REFERENCES**

- [1]. S. C. Arora, V. Sharma Fixed point theorems for fuzzy mappings Fuzzy Sets Syst., 110 (2000), pp. 127-130
- [2]. L.A. Zadeh Fuzzy sets Inform. Contr., 8 (1965), pp. 338-353
- S. Heilpern Fuzzy mappings and fixed point [3]. theorem J. Math. Anal. Appl., 83 (1981), pp. 566-569
- [4]. S.B. Nadler Multivalued contraction mappings Pac. J. Math., 30 (1969), pp. 475-488
- I. Beg, A. Azam Fixed points of asymptotically [5]. regular multivalued mappings J. Austral. Math. Soc., 53 (1992), pp. 313-326

- point theorems Fuzzy Sets Syst., 21 (1987), pp. 53-58
- [7]. B.S. Lee, S.J. Cho A fixed point theorems for contractive type fuzzy mappings Fuzzy Sets Syst., 61 (1994), pp. 309-312
- J.Y. Park, J.U. Jeong Fixed point theorems for [8]. fuzzy mappings Fuzzy Sets Syst., 87 (1997), pp. 111-116
- [9]. V. Popa Common fixed points for multifunctions satisfying a rational inequality Kobe J. Math., 2 (1985), pp. 23-28
- [10]. I. Beg, M.A. Ahmed, Common fixed point for generalized fuzzy contraction mappings satisfying an implicit relation, Appl. Math. Lett. (2012) (in press).