
IJSRST173794 | Received : 01 Oct 2017 | Accepted : 12 Oct 2017 | September-October-2017 [(3) 7: 521-525]

© 2017 IJSRST | Volume 3 | Issue 7 | Print ISSN: 2395-6011 | Online ISSN: 2395-602X
Themed Section: Science and Technology

 521

Extraction of Dependencies from Javascript Files using High Performance

Analysis
Neha Chauksey, Dr. A. S. Ghotkar

Department of Computer Engineering, PICT, Savitribai Phule Pune University, Maharashtra, India

ABSTRACT

In various software development analyzers, it is necessary to know the dependencies amongst classes and other

objects, so that the developers may get the information as to where are these dependencies currently in use, and

which modules will be affected due to change in codes. This paper aims to build a dependency analyzer that takes

multiple XML documents as the input, each representing a huge repository with an ever growing list of artifacts

produced by large teams in an organization. This analyzer is designed such that it analyzes simple and recursive

dependencies by utilizing the power of database to efficiently store and search the dependencies so as to represent

the result in a tree format. This analyzer will act as an important decision making point for approving changes

including the mitigation strategy for reducing the risk of change.

Keywords: Scripting languages, XML, Search interfaces, Restful web services

I. INTRODUCTION

In the complex world of developing software,

dependencies plays a key role. As the software keeps

changing, each new change to one of its elements could

cause regression in its dependents. Hence it becomes

very crucial from a risk mitigation perspective to not

only understand the dependencies between layers but

also within those layers that makes up that software.

Therefore an analyzer for extracting these dependencies

is required.

Performance is one of the biggest challenges while

performing recursive dependency analysis on a large

dependency tree (XML). The results of a dependency

analyzer are usually cryptic and hence would not be easy

to understand. Aggregating the dependencies of multiple

projects and performing analysis is cumbersome. The

large dependency trees are usually time consuming to

parse. The recursive analysis are complicated and time

consuming on large trees and requires a high performing

analyzer. Presenting the results with a high performing

user interface is a challenge. This dependency analyzer

is designed to not only scale in terms of searching the

dependencies across an ever growing list of repositories

but also to display huge results with optimal

performance using pagination techniques. A rich user

interface that provides an easy to view dependency tree

which accommodates on demand dependency

information will provide a good user experience.

II. LITERATURE SURVEY

Prior research has shown that customer reported

software faults are often the result of violated

dependencies that are not recognized by developers

implementing software. Many types of dependencies and

corresponding measures have been proposed to help

address this problem. The objective of this research is to

compare the relative performance of several of these

dependency measures as they relate to customer reported

defects.

Many direct attempts to address the issues related to this

is not found, but rather a very few research papers that

tangentially address these issues are available and

discussed here.

Matthias Keil and Peter Thiemann [1] used

formalization and abstract interpretation to perform a

type-based dependency analysis for javascript. Results

from this approach can be used to ensure confidentiality

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

522

and integrity of the data. Magnus Madsen, Benjamin

Livshits and Michael Fanning [2] combined the pointer

analysis and use analysis in order to obtain the analysis

of Windows 8 javascript applications. This is performed

so as to get the partial or full inference. Milos Savic et al.

[3] showed that more precise software networks can be

extracted with a tool in comparison with dependency

finder that provides even language-independent

extraction. They managed to do it using Dependency

finder to extract software networks that belongs to

different programming paradigms and fuzzy parsing

mechanism.

Liang Huai Yang et al. [4] created a 2PXMiner. This

tool was able to perform efficient and scalable query

evaluation for frequent query patterns in an XML

document. Kajal T. Claypool [5] used Label match

Algorithm and Needleman Wunsch Algorithm to do

approximate keyword search and context-specific

searching providing a better precision and recall than

exact keyword search. Binh Viet, Eric Pardede [6]

proposed to extend the power and capability of XML

with web service technologies and P2P architectures.

Active XML (AXML) is extension of distributed XML

databases. This was possible with the help of AXML-

XML data exchange and AXML data query processing.

Tag extraction using DOM Structure, Knowledge base

matching and classification when done simultaneously,

average accuracy of 96.99% classification was obtained

with less error rate by Krishna Murthy. A, Suresha [7].

Katalin Tunde et al. [8] used conceptual lattice, XFD

Mining to mine functional dependencies through formal

concept analysis which analyzes XML documents.

Compare and rank was another method that provides

speedy and accurate search in an XML document that is

for E-Commerce Applications to locate document

schemata. This method was proposed by Eric Jiu-Lin Lu

and Yu-Ming Jung [9].

Describing XML Stream processing problems related to

text processing and tree pattern matching using process

XPath expressions with automata and pushdown

automata was suggested by Dan Suciu [10]. Susumu

Nishimura, Keisuke Nakano [11] introduced the idea of

attribute grammer composition and transformation and

altSAX to develop stream transformation by giving the

specifications for tree transformation. There were many

limitations for memory and boundness seen while

adapting this approach. Multi-query evaluation and

query compaction was the technique used by Jun-Ki Min

et al. [12] that supports wide class of XPath queries for

tree shaped expressions, order-based and nested

predicates.

As of now, there is diversified research in all the

techniques and platform this paper suggests. Particularly

for analyzing javascript files that too from an input

holding relational database approach has not being

executed.

III. METHODOLOGY

This system architecture aims to build a dependency

analyzer that takes multiple XML documents as the

input, each representing a huge repository with an ever

growing list of artifacts produced by large teams in the

organization.

Figure 1. Proposed Javascript Dependency Analyzer

(JDA) Architecture

This analyzer is designed such that it analyzes simple

and recursive dependencies by utilizing the power of

database to efficiently store and search the dependencies

so as to represent the result in a tree format. It will help

programmers, testers and managers to efficiently analyze

the risk from each of their perspective so that effective

mitigation strategies can be applied for each change

depending upon their occurrence in the software

development lifecycle.

Fig. 1 shows the architecture of the proposed Javascript

Dependency Analyzer (JDA).

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

523

The proposed system is modelled in two phases for

getting a clear vision of the tasks the analyzer has to

perform.

A. Phase I

• Evaluate different analyzers to handle huge XML

• Perform literature survey for gap identification

• Design and implement Rest based client for multi-

user scenario

• Implement simple search through the database

• Design and implement audit trailing mechanism for

every search query

In this analyzer, the input is an XML file that contains

function metadata of the javascript files. This XML have

details of functions i.e. where they are called from,

declared and instantiated. The XML is parsed and all

value from XML tags are stored in a JDA database. This

database schema is predefined because the XML schema

is fixed. The JDA database is populated and managed by

the following two ways:

• JDA Admin

• JDA Search Service

JDA Admin: This module is a Java batch job that is

designed to populate the JDA database. The input XML

file is parsed with the help of StAX parser, in order to

extract appropriate information of dependencies of

various functions present in that particular repository.

The job of this admin module is to populate the database

not just once but in equal intervals so that updates in

repository should be tracked.

JDA Search Service: In the search service, queries are

fired in terms of function name for which the

dependencies are to be found. This module will be able

to execute the queries successfully if and only if the JDA

Admin module has performed its operation. Phase I of

this JDA analyzer aims to provide a vertical slicing of

back-end services by getting the results through rest

APIs. These APIs are designed for showing simple

search results that contain the information of

dependencies. Reports of audit i.e. tracking the search

query so as to generate a report of what the users have

searched for.

B. Phase II

• Code re-factoring

• Enhance the analyzer for multiple XML documents

• Implement recursive search through the database

• Design and implement the User Interface using

OpenUI5 libraries and components

In this phase, the structure and implementation of first

phase will be enhanced by re-factoring the classes and

codes. The analyzer should be able to process multiple

XML files, to get the results from different versions of

the repository. A recursive search is to be designed in

order to get the nested dependencies among the

functions. And finally the user interface using OpenUI5

libraries and components will be created to make a

smoother user experience. The results are planned to be

displayed in a form of tree so as to make it visible in a

user readable format.

IV. RESULTS AND DISCUSSION

A. Huge XML Parser Analysis

In this paper huge XML files are taken as input to the

system. In oder to parse this various parser were tested

but sTax parser worked really well for the requirement.

The StAX specification defines a number of uses cases

for the API:

• Data binding

– Unmarshalling the XML document

– Marshalling the XML document

– Parallel document processing

– Wireless communication

• Virtual data sources

– Viewing as XML data stored in databases

– Viewing data in Java objects created by XML

data binding

– Navigating a DOM tree as a stream of events

• Parsing specific XML vocabularies

• Pipelined XML processing

The execution time required for parsing the XML file

was comparatively lesser than DOM parser. Its

navigation as stream of events helped understanding the

schema well and creation of models became much easier

for other backend processing.

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

524

B. MyBatis & Postgres SQL Performance Analysis

Unlike Object-relational mapping frameworks, MyBatis

does not map Java objects to database tables but Java

methods to SQL statements.

MyBatis lets you use all your database functionality like

stored procedures, views, queries of any complexity and

vendor proprietary features. It is often a good choice for

legacy or de-normalized databases or to obtain full

control of SQL execution.It simplifies coding compared

to JDBC. SQL statements are executed with a single line.

MyBatis provides a mapping engine that maps SQL

results to object trees in a declarative way. SQL

statements can be built dynamically by using a built-in

language with XML-like syntax or with Apache

Velocity using the Velocity integration plugin. MyBatis

integrates with Spring Framework.This feature allows

one to build business code free of dependencies.

MyBatis supports declarative data caching. A statement

can be marked as cacheable so any data retrieved from

the database will be stored in a cache and future

executions of that statement will retrieve the cached data

instead hitting the database. MyBatis provides a default

cache implementation based on a Java HashMap and

default connectors for integrating with:

OSCache, Ehcache, Hazelcast and Memcached. It

provides an API to plug other cache implementations.

Without using Mybatis and connection pooling the

database was uploaded as 1700 records in 45 min

Whereas, when the feature of pooling of connections to

the postgres for each records in the XML was used, the

population of database for 1700 records in 1 min

Figure 2. Graph Showing Time taken to Extract

Dependencies with respect to Number of Files

Figure 3. Graph Showing Time taken to Extract

Dependencies for Multiple Search Queries

V. CONCLUSION

The proposed javascript dependency analyzer represents

an approach to get the dependencies of the functions to

the programmer. It is capable of handling huge and

multiple XML files with lesser complexity. The

proposed design includes usage of postgreSQL relational

database, which in turn produces cost effective and

faster results. This kind of analyzer will be beneficial for

the programmers to make important decisions for

approving changes including the mitigation strategy for

reducing the risk of change.

Figure 4. Graph Showing Time taken for Database

Upload with and without Connection Pooling

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

525

VI. FUTURE ENHANCEMENTS

The research can be extended to explore the details of

javascript files so as to create a superset analyzer for

javascript. If a script for multiplatform coding languages

is designed, this analyzer can be utilized for all object

oriented programming languages.

VII. REFERENCES

[1]. Matthias Keil and Peter Thiemann, "Type-based

Dependency Analysis for javascript", in ACM

978-1-4503-2144-0/13/06, June 2013.

[2]. Magnus Madsen, Benjamin Livshits and Michael

Fanning, "Practical Static Analysis of javascript

Applications in the Presence of Frameworks and

Libraries", in Microsoft Research Technical

Report, MSR- TR-201266.

[3]. Milos Savic, Gordana Rakic, Zoran Budimac,

Mirjana Ivanovic, "A language-independent

approach to extraction of dependencies between

source code entities", in Elsevier: Information and

Software Technology, 2014.

[4]. Liang Huai Yang, Mong Li Lee, Wynne Hsu,

Decai Huang, Limsoon Wong, "Efficient Mining

of frequent XML query patterns with

repeatingsiblings", in Elsevier: Information and

Software Technology 50 pp. 375389, 2008.

[5]. Kajal T. Claypool, "SUSAX: Context-specific

searching in XML documents using sequence

alignment techniques", in Elsevier: Data and

Knowledge Engineering 65 pp. 177-197, 2008.

[6]. 6. Binh Viet, Eric Pardede, "Active XML

(AXML) research: Survey on the representation,

system architecture, data exchange mechanism

and query evaluation", in Elsevier: Journal of

Network and Computer Applications, 2013.

[7]. Krishna Murthy. A, Suresha, "XML URL

Classification based on their semantic structure

orientation for Web Mining Applications", in

Elsevier: Procedia Computer Science 46 pp. 143-

150 (2015).

[8]. Katalin Tunde, Janosi-Ranez, Viorica Varga and

Timea Nagy, "Detecting XML Functional

Dependencies through Formal Concept Analysis",

in IEEE transactions, Sept-20, 2010.

[9]. Eric Jiu-Lin Lu and Yu-Ming Jung, "XDSearch:

an efficient search engine for XML document

schemata", in PERGAMO: Expert systems with

Applications 24 pp. 213-224, 2003.

[10]. Dan Suciu, "From searching text to querying

XML streams", in Elsevier: Journal of Discrete

Algorithms 2 pp. 17-32, 2004.

[11]. Susumu Nishimura, Keisuke Nakano, "XML

Stream transformer generation through

program composition and dependency analysis",

in Elsevier: Science of Computer Programming 54

pp. 257-290, 2005.

[12]. Jun-Ki Min, Myung-Jae Park and Chin-Wan

Chung, "XTREAM: an efficient multi-query

evaluation on streaming XML data", in Elsevier:

Information Sciences 177 pp. 3519-3538, 2007.

