
IJSRST217372 | Received : 16 Oct 2017 | Accepted : 31 Oct 2017 | September-October-2017 [(3) 7: 1022-1027]

© 2017 IJSRST | Volume 3 | Issue 7 | Print ISSN: 2395-6011 | Online ISSN: 2395-602X
Themed Section: Science and Technology

1022

Porting Modbus Stack to FreeRTOS on LPC1768
P. Azaruddin1, Arunakar. B2

1
PG Scholar, JNTUA College of Engineering, Ananthapuramu, Andhra Pradesh, India

2
Solution Architect, TCS, Hyderabad, Telangana, India

ABSTRACT

The key idea behind this paper is to implement Modbus RTU protocol on top of FreeRTOS using LPC1768

microcontroller and DragonBoard 410C. Modbus RTU protocol is serial communication protocol which is mainly

for industrial applications like Building Management System. This protocol is implemented on top of FreeRTOS,

which is a real-time kernel for small embedded systems. A small application is created by using temperature sensor

whose output is sent to IoT gateway device by implementing Modbus Serial protocol. DragonBoard 410C is used as

gateway device. The temperature data from gateway device is sent to the cloud using ThingsBoard IoT platform.

Keywords: Modbus Serial Protocol, FreeRTOS, LPC1768, DragonBoard 410C, IoT Gateway, ThingsBoard

I. INTRODUCTION

Embedded Systems plays a most significant role in the

field of electronics. Most of the computing systems

today utilize embedded systems. As the technology

getting advanced embedded systems are programmed

with real-time operating system which maximizes the

efficiency of the system by proper handling of multiple

tasking, reducing latencies and many other challenges.

Many things like architecture design, timing analysis,

multitasking and specifications are needed to keep in

mind while designing as software for real-time

embedded system.

FreeRTOS is basically an open source and real-time

kernel which runs on the microcontroller to develop

real-time embedded system applications. FreeRTOS can

be efficiently used for complex embedded system

applications because it provides time-related application

programming [1].

Modbus protocol basically a serial communication

protocol to transmit data between the devices like

master/slave communication [6]. This paper discuss

about how Modbus protocol is used to send the

temperature data from LPC1768 to IoT gateway device.

Here Dragon Board 410C is used as IoT gateway device.

The microcontroller LPC1768 acts as slave device and

Dragon Board 410C as master device. The data from IoT

gateway device is sent to PC and from PC to the cloud

using Thingsboard.io IoT platform which uses MQTT

protocol [4].

The paper is structured as following: section II and

section III discuss about basic details of FreeRTOS and

Modbus Protocol. The details of IoT gateway and

architecture of the system is discussed in section IV and

section V including implementation. In these sections,

the implementation of Modbus protocol and how data is

sent to the cloud by using Dragon Board 410C as

gateway device is discussed. The results and conclusion

are given in section VI and VII.

II. FreeRTOS

FreeRTOS is a Real Time Kernel which is mostly

applied for simple and also for complex embedded

system applications. It was officially declared by

FreeRTOS Engineers Limited that FreeRTOS supports

more than 30 microcontroller architectures and can be

built on 20 different compilers. By this porting

capability, FreeRTOS has leading scope in real-time

embedded applications. Hence FreeRTOS provides the

core real-time scheduling functionality, inter-task

communication, timing and synchronisation primitives

only [1]. Any application in FreeRTOS is written in the

form of tasks. If more applications are there then more

tasks are created and all tasks are executed one by one

by giving priority to each task. The main features of

FreeRTOS include pre-emptive scheduling, task

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

1023

prioritization, implementation of queues, semaphores

and mutexes. All the applications in FreeRTOS are

written in C language. The core FreeRTOS code is

contained in three source files with necessary header

files as mentioned below:

 task.c

 queue.c

 list.c

The project files for FreeRTOS demo applications can

be downloaded from FreeRTOS official website. The

only header file which must be included to any

FreeRTOS project is FreeRTOSConfig.h because it

contains the configuration items of the demo project.

Each demo project has its own FreeRTOSConfig.h

header file [1]. The FreeRTOS code is managed by the

heap memory. Whenever a new task, queue, semaphore

or mute is created RTOS needs RAM. The RTOS heap

memory dynamically allocates the RAM within the

RTOS application program interface object creation

functions. Due to the high advantage of FreeRTOS in

complex and real-time embedded systems, it is mostly

used for commercial applications and it is also freely

available.

III. MODBUS PROTOCOL

Modbus is an open protocol developed by Modicon in

1979 which is mainly used by many manufacturers for

industrial applications. It is basically a serial

communication protocol to transmit data between the

devices like master/slave communication. To keep it

simple, it is a protocol that determines the process of

how data is packaged and sent from slave device to

master device [2]. The basic block diagram of Modbus

serial communication is shown in below Fig.1:

Figure 1 Basic Modbus Communication

Modbus can be communicated in three ways as

mentioned below:

 Modbus ASCII

 Modbus RTU

 Modbus TCP/IP

Modbus ASCII, all the messages in this communication

are in the form of ASCII characters and the messages

can be readable while monitoring. It is the slowest

protocol among above three protocols which is suitable

for telephone modems.

Modbus RTU, data is sent in the form of binary and

uses hexadecimal representation of data. As the

messages are in binary coding and cannot be read while

monitoring. Modbus RTU communication is done using

RS-232, RS-485, and UART serial cables by mentioning

slave address. It is mostly used by the manufactures in

the industry.

Modbus TCP/IP protocol is like Modbus RTU but is

built on top of TCP/IP and commutation is established

using IP address rather than slave address. The Ethernet

network which supports TCP/IP must support for

Modbus/TCP protocol.

To establish communication with the slave device, the

master should send the slave address, function code, data

and error check in the Modbus RTU frame. Modbus

message format contains Slave Address, Function Code,

Data that needs to be transfer and Check bit which is

called as CRC (Cyclic Redundancy Check). The

following Fig.2 gives the detail message format of

Modbus message.

Figure 2 Modbus Message Format

Slave Address: Modus can have up to 247 slaves from 0

to 247 (decimal number). If only one device is using as a

slave then „0‟ is given as slave address in the message

format. To have successful transmission of messages

between master and slave, slave address must be called

in the Modbus initialization function.

Function Code: There are nearly 255 function codes

which give commands to the slave device to read or

write the data. Depending on the device necessary

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

1025

Figure 4 Architecture of the System

1) Hardware:

The hardware contains the peripherals like CPU, RAM

and I/O. The LPC1768 microcontroller operates at

100MHz and contains the 512KB of flash memory. The

communication between LPC1768 microcontroller and

Dragon Board 410C is Modbus Serial Communication.

2) OS Layer:

This layer provides the communication between

hardware layer which contains all the necessary

peripherals and application layer. In which the driver

codes like ADC and UART codes are written to

communicate with the other devices. The operating

system running in Dragon Board 410C is Android.

3) Application Layer:

On top of FreeRTOS, Modbus stack is written which

send the data to the application layer. Then data is sent

to the cloud by using open source IoT platform called

ThingsBoard.

B. Implementation of Modbus Serial Protocol

A small application is done by implementing Modbus

Serial Protocol to send the temperature data from

LPC1768 to IoT gateway device and from gateway

device to cloud. Dragon Board 410C is used an IoT gate

device and the communication between LPC1768 and

Dragon Board is through Modbus Serial UART port.

The complete block diagram of the application is shown

in the following Fig.5:

Figure 5 Block Diagram of the System

1) Integration of Temperature Sensor:

The first step is to integrate temperature sensor with

LPC1768 microcontroller. The temperature sensor used

is LM35 which senses surrounding temperature and

gives its output in the form of analog voltage [7]. The

output of the temperature sensor is given to ADC of

LPC1768 to convert the data into digital and to process

it to IoT gateway. A task is created by using FreeRTOS

to read the temperature data from sensor. The input

voltage applied to LPC1768 is 3.3Volts. Registers of

ADC are configured properly to get the temperature data

from the sensor.

2) Modbus Communication:

Modbus protocol is used to send the temperature data

from LPC1768 to IoT gateway device. Modbus RTU is a

serial communication which uses RS-232, RS485 or

UART. Here UART serial communication is used to

transfer temperature data. UART0 is used to

communicate with IoT gateway device. To send the data

from LPC1768 to IoT gateway, UART registers need to

be configured. There are 6 UART registers in LPC1768:

RBR, THR, FCR, LCR, DLL and DLM [5].

The communication is done through Modbus protocol,

hence a function called eMBInit () is initialised in the

code which slave address, port number and baud rate as

its arguments. The slave address and port number are

initialised as „0‟, baud rate as 115200. To have proper

UART communication between devices the baud rate of

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

1026

two devices should be same. In the initialisation of

eMBInit (), another Modbus function is included to send

data to Dragon Board 410 C. The function used to send

data is eMBRTUSend () which has the same slave

address as mentioned in the function eMBInit (). All

these functions are included in the FreeRTOS task which

is created initially to get the temperature data.

3) Sending Data to Cloud:

The temperature data which is obtained from IoT

gateway device is now sent to the cloud using

ThingsBoard IoT platform. ThingsBoard is an open

source IoT platform which is used to collect, analyze

and deliver device data to other systems. Data from IoT

gateway device is sent to the cloud using ThingsBoard

platform which uses MQTT protocol. Installation of

MQTT libraries and java script files needed to send data

to the cloud is done in PC (Personal Computer) which

runs on Ubuntu 14.04 version. A device is created in

ThingsBoard IoT platform by using tenant account.

The temperature data from DragonBoard 410C is pulled

into PC (Personal Computer) by using ttyUSB. A file is

created to read the data from ttyUSB. Now the data

from PC to cloud is pushed by running mosquito.sh file

in the terminal which contains the java script to publish

the data. After running the shell script file, the

connection status is visible in the Ubuntu terminal. If the

connection is established then the temperature data is

visible on the selected widget. There are many widgets

available and any one widget can be selected to visualize

temperature data.

VI.EXPERIMENTAL SETUP AND RESULT

The MCUXpresso is the IDE used to compile the

FreeRTOS code which is written to read temperature

data. The code is written in Embedded C. To flash the

program into LPC1768 microcontroller Segger J-Link

debugger is used. Segger J-Link supports many

microcontrollers and downloads the code directly to

RAM and flash memory. Setting breakpoints in external

memory of Cortex-M systems is possible only with J-

Link‟s Unlimited Flash Breakpoints technology. The

hardware setup that is done to get the temperature data is

shown in the below Fig.6:

Figure 6 Experimental Setup

It contains LPC1768 microcontroller, Segger J-Link

debugger, Dragon Board 410 C, LM-35 temperature

sensor, and basic electronics kit like breadboard,

connecting wires. In the above figure, it is observed that

the temperature reading 26 degree Celsius is shown in

one of the widgets of the ThingsBoard IoT platform.

VII. CONCLUSION

Modbus protocol stack has been successfully ported to

FreeRTOS on LPC1768 microcontroller by utilising

temperature sensor as an application part. By this

implementation of Modbus protocol on top of

FreeRTOS, it is easy to use in industrial applications to

communicate and control the devices. As the world is

transforming towards IoT, this Modbus implementation

using FreeRTOS is an added advantage for industrial

applications like Building Management Systems. The

project can be extended further by adding more sensors

like humidity sensor, ultrasonic sensors to the IoT

gateway device by creating few more tasks in FreeRTOS.

If the tasks are more in FreeRTOS then all those tasks

need to be scheduled in time which is one of the

challenging tasks to do.

VIII. REFERENCES

[1] FreeRTOS; http://freertos.org.

[2] Kelong Wang, Daogang peng, lei Song and Hao

Zhang “Implementation of Modbus Communication

Protocol based on ARM Cortex M0”, IEEE

Conference on System Science and Engineering

(ICSSE), pp.69-73, July 2014.

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

1027

[3] DragonBoard 410C Development Board:

https://www.96boards.org/documentation/Consumer

Edition/DragonBoard-410C/

[4] ThingsBoard Open Source IoT platform:

https://thingsboard.io/docs/getting-started-

guides/heloworld/

[5] LPC1768 ARM Cortex-M3 based Microcontroller::

http://akizukidenshi.com/download/lpc1768.pdf

[6] Modbus Protocol: http://modbus.org/faq.php

[7] LM35 Temperature Sensor:

http://www.ti.com/lit/ds/symlink/lm35.pdf

[8] IoT: https://en.wikipedia.org/wiki/Internet_of_things

[9] MCUXpresso Integrated Development

Environment: https://www.nxp.com/docs/en/user-

guide/MCUXpresso_IDE_User_Guide.pdf

https://www.96boards.org/documentation/ConsumerEdition/DragonBoard-410C/
https://www.96boards.org/documentation/ConsumerEdition/DragonBoard-410C/
https://thingsboard.io/docs/getting-started-guides/heloworld/
https://thingsboard.io/docs/getting-started-guides/heloworld/
http://akizukidenshi.com/download/lpc1768.pdf
http://www.ti.com/lit/ds/symlink/lm35.pdf
https://en.wikipedia.org/wiki/Internet_of_things

