
IJSRST1736128 | Received : 16 Oct 2017 | Accepted : 31 Oct 2017 | September-October-2017 [(3) 7: 1037-1041]

© 2017 IJSRST | Volume 3 | Issue 7 | Print ISSN: 2395-6011 | Online ISSN: 2395-602X
Themed Section: Science and Technology

1037

Query Processing in the Crowdsourcing Environment
Cincy. W. C

1
, J. R. Jeba

2

1
Research Scholar, Department of Computer Applications, Noorul Islam Centre for Higher Education, Kumara Coil,

Tamilnadu, India
2
Associate Professor & HOD, Department of Computer Applications, Noorul Islam Centre for Higher Education,

Kumara coil, Tamilnadu, India

ABSTRACT

Optimization of the query is the biggest problem now days for crowdsourcing system. Crowdsourcing is source for

the experts to solve the problem and freely sharing the answer with everyone also hiding the complexities and to

relief the user from burden of dealing with the crowd. The user has to submit an SQL query and the system takes the

responsible for compiling the query, generating the execution plan and evaluating in the crowdsourcing market.

Query Processing is the scientific art of obtaining the desired information from a database system in a predictable

and reliable fashion. Database systems must be able to respond to requests for information from the user i.e. process

queries. In large database systems, which may be running on unpredictable and volatile environments, it is difficult

to produce efficient database query plans based on information available solely at compile time. Getting the

database results in a timely manner deals with the technique of Query Optimization. Efficient processing of queries

is an important requirement in many interactive environments that involve massive amounts of data. Efficient query

processing in domains such as the Web, multimedia search, and distributed systems has shown a great impact on

performance. This paper will introduce the basic concepts of query processing and query optimization in the

relational database. We also describe and difference query processing techniques in relational databases.

Keywords : Query Processing, Query Optimization, Database, Crowd Sourcing, Data Mining

I. INTRODUCTION

The field of crowdsourcing, which deals with solving

hard problems by combining the power of machine and

human computation, has gained a lot of traction in the

last few years. Crowdsourcing techniques are used for

solving problems that are hard for machines, such as

comprehending and analyzing abstract concepts as well

as media such as images, video and text.

Query optimization is an operation of frequent relational

database management systems. The query optimizer

workout to regulate the most active way to evaluate a

given query by considering the possible query plans.

Practically, the query optimizer cannot be getting

directly by users once queries are submitted to database

server, and parsed by the parser; they are then moved to

the query optimizer where optimization occurs.

However, some database engines grant guiding the

query optimizer with hints. Queries results are produced

by accessing relative database data and evaluating it in a

way that return the requested information. By the reason

of data-base structures are complicated, in most cases,

and especially for not-very-simple queries, the needed

data for a query can be gathered from a database by

bring it in different ways, through different data-

structures, and in different orders. Each different way

commonly requires different processing time. Processing

times of the same query may have high variance, a

second to minutes, hours, depending on the way selected.

The plan of query optimization, which is an automated

process, is to find the way to process a user query in

small amount of time. Hence there must be system that

helps to analyze the query, optimize it, find query

execution plans and finally predict potential query plan

for execution over crowd sourced data.

The fundamental part of any DBMS is query processing

and optimization. The results of queries must be

available in the time frame needed by the submitting

user. Query processing techniques based on multiple

design dimensions can be classified as.

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

1038

1. Query model: Processing techniques are classified

according to the query model they assume. Some

techniques assume a selection query model, where

scores are attached directly to base tuples. Other

techniques assume a join query model, where scores are

computed over join results. A third category assumes an

aggregate query model, where we are interested in

ranking groups of tuples.

2. Data access methods:

Processing techniques are classified according to the

data access methods they assume to be available in the

underlying data sources. For example, some techniques

assume the availability of random access, while others

are restricted to only sort access.

3. Implementation level:

Processing techniques are classified according to their

level of integration with database systems. For example,

some techniques are implemented in an application layer

on top of the database system, while others are

implemented as query operators.

4. Data and query uncertainty:

Processing techniques are classified based on the

uncertainty involved in their data and query models.

Some techniques produce exact answers, while others

allow for approximate answers, or deal with uncertain

data.

5. Ranking function:

Processing techniques are classified based on the

restrictions they impose on the underlying Ranking

(scoring) function. Most proposed techniques assume

monotone scoring functions.

II. QUERY PROCESSING

Query processing refers to the range of activities

involved in extracting data from a database. The

activities include translation of queries in high-level

database languages into expressions that can be used at

the physical level of the file system, a variety of query-

optimizing transformations, and actual evaluation of

queries. A database query is the vehicle for instructing a

DBMS to update or retrieve specific data to/from the

physically stored medium. The actual updating and

retrieval of data is performed through various “low-level”

operations [1]. Examples of such operations for a

relational DBMS can be relational algebra operations

such as project, join, select, Cartesian product, etc.

[1].While the DBMS is designed to process these low -

level operations efficiently, it can be quite the burden to

a user to submit requests to the DBMS in these formats.

There are three phases [1] that a query passes through

during the DBMS’ processing of that query:

1. Parsing and translation

2. Optimization

3. Evaluation

Figure 1. Steps in Query Process

The first step in processing a query submitted to a

DBMS is to convert the query into a form usable by the

query processing engine. High-level query languages

such as SQL represent a query as a string, or sequence,

of characters. Certain sequences of characters represent

various types of tokens such as keywords, operators,

operands, literal strings, etc. Like all languages, there are

rules (syntax and grammar) that govern how the tokens

can be combined into Understandable (i.e. valid)

statements.

The primary job of the parser is to extract the tokens

from the raw string of characters and translate them into

the corresponding internal data elements (i.e. relational

algebra operations and operands) and structures (i.e.

query tree, query graph). The last job of the parser is to

verify the validity and syntax of the original query string.

In second stage, the query processor applies rules to the

internal data structures of the query to transform these

structures into equivalent, but more efficient

representations. The rules can be based upon

mathematical models of the relational algebra expression

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

1039

and tree (heuristics), upon cost estimates of different

algorithms applied to operations or upon the semantics

within the query and the relations it involves. Selecting

the proper rules to apply, when to apply them and how

they are applied is the function of the query optimization

engine.

The final step in processing a query is the evaluation

phase. The best evaluation plan candidate generated by

the optimization engine is selected and then executed.

Note that there can exist multiple methods of executing

a query. Besides processing a query in a simple

sequential manner, some of a query’s individual

operations can be processed in parallel either as

independent processes or as interdependent pipelines of

processes or threads. Regardless of the method chosen,

the actual results should be same.

Consider for example: select balance from account

where balance < 2500. This can be translated into either

of the following relational algebra expressions:

 σbalance<2500 (Πbalance(account))

 Πbalance(σbalance<2500(account))

Which can also be represented as either of the following

query trees:

 balance<2500

 balance | | balance

 balance<2500 | | account account

III. QUERY ALGORITHMS

Queries are ultimately reduced to a number of file scan

operations on the underlying physical file structures [2].

For each relational operation, there can exist several

different access paths to the particular records needed.

The query execution engine can have a multitude of

specialized algorithms designed to process particular

relational operation and access path combinations.

 A. Selection Algorithms The Select operation must

search through the data files for records meeting the

selection criteria. Following are some examples of

simple (one attribute) selection algorithms [2]:

Linear search: Every record from the file is read and

compared to the selection criteria. The execution cost for

searching on a non-key attribute is br, where br is the

number of blocks in the file representing relation r. On a

key attribute, the average cost is br/2, with a worst case

of br.

2. Binary search: A binary search, on equality,

performed on a primary key attribute has a worst-case

cost of log (br). This can be considerably more efficient

than the linear search, for a large number of records.

3. Search using a primary index on equality: With a

B+-tree index, an equality comparison on a key attribute

will have a worst -case cost of the height of the tree plus

one to retrieve the record from the data file. An equality

comparison on a non-key attribute will be the same

except that multiple records may meet the condition, in

which case, we add the number of blocks containing the

records to the cost.

4. Search using a primary index on comparison:

When the comparison operators (<, >) are used to

retrieve multiple records from a file sorted by the search

attribute, the first record satisfying the condition is

located and the total blocks before (<) or after (>) is

added to the cost of locating the first record.

5. Search using a secondary index on equality:

Retrieve one record with an equality comparison on a

key attribute; or retrieve a set of records on a non-key

attribute [2]. For a single record, the cost will be equal to

the cost of locating the search key in the index file plus

one for retrieving the data record. For multiple records,

the cost will be equal to the cost of locating the search

key in the index file plus one block access for each data

record retrieval, since the data file is not ordered on the

search attribute.

B. Join Algorithms The join algorithm can be

implemented in a different ways. In terms of disk

accesses, the join operations can be very expensive, so

implementing and utilizing efficient join algorithms is

important in minimizing a query’s execution time [3].

The following are 4 well - known types of join

algorithms:

1. Nested-Loop Join: It consists of an inner for loop

nested within an outer for loop [3].

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

1040

2. Index Nested-Loop Join: This algorithm is the same

as the Nested-Loop Join, except an index file on the

inner relation’s join attribute is used versus a data-file

scan on each index lookup in the inner loop is essentially

an equality selection for utilizing one of the selection

algorithms Let c be the cost for the lookup, then the

worst -case cost for joining rand sis br + nr * c.

3. Sort –Merge Join: This algorithm can be used to

perform natural joins and equi-joins and requires that

each relation be sorted by the common attributes

between them [4].

4. Hash Join: The hash join algorithm can be used to

perform natural joins and equi-joins. The hash join

utilizes two hash table file structures (one for each

relation) to partition each relation’s records into sets

containing identical hash values on the join attributes.

Each relation is scanned and its corresponding hash table

on the join attribute values is built.

C. Indexes Role The execution time of various

operations such as select and join can be reduced by

using indexes [5]. Let us review some of the types of

index file structures and the roles they play in reducing

execution time and overhead:

1. Dense Index: Data-file is ordered by the search key

and every search key value has a separate index record.

This structure requires only a single seek to find the first

occurrence of a set of contiguous record s with the

desired search value [6].

2. Sparse Index: Data-file is ordered by the index

search key and only some of the search key values have

corresponding index records. Each index record’s data-

file pointer points to the first data-file record with the

search key value. While this structure can be less

efficient than a dense index to find the desired records, it

requires less storage space and less overhead during

insertion and deletion operations.

3. Primary Index: The data file is ordered by the

attribute that is also the search key in the index file.

Primary indices can be dense or sparse. This is also

referred to as an Index-Sequential File [7].

4. Secondary Index: The data file is ordered by an

attribute that is different from the search key in the index

file. Secondary indices must be dense.

5. Multi-Level Index: An index structure consisting of

2 or more tier s of records where an upper tier’s records

point to associated index records of the tier below. The

bottom tier’s index records contain the pointers to the

data-file records. Multi-level indices can be used, for

instance, to reduce the number of disk block reads

needed during a binary search.

6. Clustering Index: A two-level index structure where

the records in the first level contain the clustering field

value in one field and a second field pointing to a block

[of 2nd level records] in the second level. The records in

the second level have one field that points to an actual

data file record or to another 2nd level block [8].

7. B+-tree Index: Multi- level index with a balanced-

tree structure. Finding a search key value in a B+-tree is

proportional to the height of the tree maximum number

of seeks required is log (height). While this, on average,

is more than a single -level, dense index that requires

only one seek, the B+-tree structure has a distinct

advantage in that it does not require reorganization, and

it is self-optimizing because the tree is kept balanced

during insertions and deletions.

6. Choice of Evaluation Plans

The query optimization engine is used to generate a set

of candidate evaluation plans. Some will use the

heuristic theory which produces a faster and more

efficient execution. Then the others may produced by

the prior historical results which are more efficient than

the theoretical models, this can be used very well in case

of queries dependent on the semantic nature of the data

to be processed. Still others can be more efficient due to

“outside agencies” such as network congestion,

competing applications on the same CPU, etc. [9]

IV. Conclusion

The most important functional requirements of a

database system are to process queries in a timely

manner. This is particularly true in case of very large

and mission critical applications such as weather

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

1041

forecasting, banking systems and aeronautical

applications where they have millions and even trillions

of records containing data and it becomes hard to store

and to retrieve data from them. The need for faster and

faster, “immediate” results never ceases. Some of the

basic techniques and principles with examples of query

processing and optimization is mentioned here in this

paper.

V. REFERENCES

[1]. Introduction to Query Processing and Optimization by

Michael L. Rupley, Jr.

[2]. K. Kiran Kumar[1], T.M. Santhi Sri [2], Voruganti

Vamshi priya [3], “Introduction to Techniques of

Query Processing and Optimization”, International

Journal of Innovative Research in Advanced

Engineering ., Volume 2,Issue 3, March 2015.

[3]. Jagjit Bhatia,” Analytical Evaluation of Different

Query Optimization Techniques”, THE

INTERNATIONAL JOURNAL OF SCIENCE &

TECHNOLEDGE., Vol 3, Issue 3, March, 2015.

[4]. E.J.Thomson Fredrick1 and G.Radhamani2,”

INFORMATION RETRIEVAL USING XQUERY

PROCESSING TECHNIQUES”, International Journal

of Database Management Systems. Vol.3, No.1,

February 2011.

[5]. G. R. Bamnote, S. S. Agrawal,” Introduction to Query

Processing and Optimization”, International Journal of

Advanced Research in Computer Science and Software

Engineering. Vol 3, Issue 7, July 2013.

[6]. Daodu, S. S., Akhatuamen, S., Folorunso, O. and

Ukaoha, K.C.”, Query Processing and Optimization in

a Distributed Database System”, Computing,

Information Systems, Development Informatics &

Allied Research Journal. Vol. 7 No. 1. March, 2016.

[7]. Kind of El Marry, Christoph Lofi and Wolf-Tilo

Balke,” Crowdsourcing for Query

[8]. Processing on Web Data: A Case Study on the Skyline

Operator”, Journal of Computing and Information

Technology. October, 2014.

[9]. Avi Silbershatz, Hank Korth and Sudarshan. Database

System Concepts, 4th Edition. McGraw-Hill, 2002.

[10]. Vandana Jindal 1, A.K.Verma 2, Seema Bawa 2,”

Survey on Query Processing & Optimization

Techniques in WSN”, International Journal of

Computer Science and Information Security. Vol. 14,

No. 2, February 2016.

