
IJSRST173869 | Received : 10 Nov 2017 | Accepted : 24 Nov 2017 | November-December-2017 [(3)8: 349-353]

© 2017 IJSRST | Volume 3 | Issue 8 | Print ISSN: 2395-6011 | Online ISSN: 2395-602X
Themed Section: Science and Technology

349

Comparative Analysis of Sequitur Algorithm with Adaptive
Huffman Coding Algorithm on Text File Compression with

Exponential Method

Muhammad Fadlan1, Surya Darma Nasution2, Fadlina3, Saidi Ramadan Siregar4, Pristiwanto5
1Research Scholar. STMIK Budi Darma, Medan, Indonesia

2,3,4,5 Department of Computer Engineering, STMIK Budi Darma, Medan, Indonesia

ABSTRACT

This research was conducted to analyze and compare sequitur algorithm with the adaptive Huffman coding

algorithm in compressing text file, to find which algorithm more effective and efficient in compressing compressed

text file will be compared with an exponential method to be seen the performance of each algorithm based on CR,

SS, RC. Text file compression will read the current string in the text file. In the Huffman adapting algorithm the text

file coding will be changed into bit form, and the sequitur algorithm will change the file based on the grammar. The

test result states that Huffman adapting coding algorithm is no better than sequitur algorithm.

Keywords: Compression, Text file, Adaptive Huffman Coding, Sequitur, Exponential.

I. INTRODUCTION

The more the technology, the more data or files we want

to save, or we send, but sometimes the memory capacity

that we have not comparable with the data we will save;

Therefore the data will be stored compressed first so that

its size becomes smaller. If the size of the data can be

compressed to be smaller than the original size, then

automatically the memory can store more data and be

concerning delivery will be faster and save the time

required.

At the moment now much software used to handle data

compression problems. In the process of data

compression, there are some things to be considered,

time process (the time that runs when data is compressed

and decompressed), ratio (size of data after compression

and decompression), completeness (completeness of

data after the files are in compression and

decompression), space savings (percentage difference in

data size after compressed with data size before in

compression).

Data compression has an essential role in file storage

and distribution systems. Data compression can be used

in multimedia fields, text documents, and database

records.[1].

The adaptive Huffman coding algorithm is an extension

of the Huffman analogy, where dynamically encoded

files have a significant impact on the effectiveness of the

tree as an encoder. Unlike the adaptive Huffman coding

algorithm that works on a character-by-character basis,

the sequitur algorithm operates by running the constraint

diagrams and usability rules.

Previous research ever conducted by Craig G. Nevill-

Manning and Ian H. Witten SEQUITUR solves a new

problem by operating gradually. Also, the simple

structure of this method allows it to operate in space and

time which is linear in the input size. The results of this

study can process 50,000 symbols per second and have

been applied [2].

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

350

II. METHODS AND MATERIAL

2.1 Data Compression

The compression process is the process of reducing the

size of data to produce a robust or compact digital

representation but can still represent the quantity of

information contained in the data. There are two types of

compression, lossy compression is capable of losing

specific data from the data, and lossless compression of

information contained in the data results similar to the

information when the data has not been

compressed[3][4][5].

2.2 Text File

A text file is a computer file composed of a series of

lines of text. The types of text files that fall into the

category contain a series of characters without any

visual format information. The contents of this category

file are usually notes or personal lists, articles, books,

and so on. Text files are similar to files produced by

word processing programs whose principal content is

textual[6].

2.3 Sequitur Algorithm

The sequitur algorithm is an algorithm based on the

concept of context-free grammar. In this algorithm is

known non-terminal symbol and terminal symbol. Both

types of symbols are elements of the production rules

(rules used to construct a sentence). A non-terminal

symbol is placed on the left and a string of terminal and

non-terminal symbols on the right. The non-terminal

symbol on the left becomes the name of the string on the

right. Sequitur builds its grammar using two principles:

1. Diagram Uniqueness, no pair of adjacent symbols

that appear more than one.

2. All rules must be used more than once, and once-

used rules must be ignored or eliminated[7].

2.4 Adaptive Huffman Coding

Faller and Gallager first introduced adaptive Huffman

coding. Knuth contributed with improvements to his

algorithm and produced an algorithm known as the FGK

algorithm. Vitter introduced the latest version of

Adaptive Huffman Coding. All methods found are

define-word schemes determining the mapping of source

messages to codewords based on the probability

estimation of source messages. The code is adaptive,

changing according to its optimal estimate at the time. In

this case, Adaptive Huffman Code responds to locality.

In a sense, the encoder studies the characteristics of the

source. Decoders should learn the similarity with the

encoder by updating the Huffman tree so that it is in

sync with the encoder[7].

The main idea of compression and decomposition begins

with an empty Huffman tree and modifies the symbol

being read and processed. Compressor and

decompressor modify the tree in the same way so that at

any point in the process will use the same code.

Although the codes may change in every step. Where the

decoder reflects the encoder operation.

Initially, compression begins with an empty Huffman

tree. There are no pre-existing symbols. The first symbol

is inserted in the stream in a compressed form. This

symbol is then added to the tree, if the symbol is found

again in the stream (tree) then the frequency increases

one, and will modify the tree, the tree is rechecked to see

if it is still a Huffman tree (best code). If it does not

rearrange trees, and cause code changes[7].

2.5 Exponential Method

In using the Exponential Comparison Method, there are

several steps that must be done:

1. Develop alternative decision alternatives.

2. Determine which criteria or comparison of decisions

are important to evaluate.

3. Determine the importance of each decision criterion.

4. Assess all alternatives on each criterion.

5. Calculate the score or total value of each alternative.

6. Determining the order of priority decisions is based on

the score or the total value of each alternative[8].

The calculation formulation of scores for each

alternative in the exponential comparison method is as

follows:

Information :

TNi: Total i-alternate value

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

351

RKij: The relative importance of- j criterion on decision

choice i

TKKj: The degree of importance of the criteria of the

junta decision; TKKj> 0; round

m: Number of decision criteria

n: Number of decision choices

j: 1,2,3, ... m; m: Number of criteria

i: 1,2,3, ..., n; n: Number of alternative options

III. RESULTS AND DISCUSSION

Comparative analysis of sequitur algorithm with

adaptive Huffman coding algorithm is done to find out

which algorithm is more effective in compressing text

file. Here is the process that happens:

Text: gadjahmada

Table I. The size of the string before it is compressed

3.1 Sequitur Algorithm

Suppose we want to compress the string "gadjahmada"

with sequitur algorithm. To find out the string size see

table 1.

Table II. Sequitur Algorithm

In table 1 the character "gadjahmada" will be checked to

see the pairs of characters appearing more than 1 time,

the character pairs appearing more than 1 time is "ad",

then the character "ad" will be processed, the character

"ad" will be inserted into the diagram which generates

nonterminal A, and generates a new character

"gAjahmAa", check whether there are any new character

pairs or not, otherwise the process is complete.

Table III. Total Bit x Frequency

Char Freq Dec Biner Bit Bit x

Freq

g 1 103 01100111 8 8

A 2 65 01000001 8 16

j 1 106 01101010 8 8

a 2 97 01100001 8 16

h 1 104 01101000 8 8

m 1 109 01101101 8 8

Total Bit x Frequency 64

3.2 Adaptive Huffman Coding

Adaptive Huffman coding algorithm is the development

of the Huffman algorithm, suppose we want to compress

the string "gadjahmada", then the steps - steps are as

follows:

1. Character g is inserted into the tree, generate the

frequency value to 1.

2. A character is inserted into the tree and creates a

new tree branch, and the frequency value becomes

2.

3. The d character in inserted makes the branch bar

below character a, and the frequency value becomes

3.

4. The character j is inserted and create a new branch

under the character d, and the g character in the

move to the left so that the tree remains a Huffman

tree.

5. Character an inserted into the tree, Because

previously there a character has been inputted then

the character frequency increases from 1 to 2, and

the tree is in the fox to remain a Huffman tree and

input character h then the frequency value so 6.

6. Input the character m and create a new tree and add

the frequency to 7, as shown in Figure 1. continued

(g) input a character and added a value to 3 and

make the frequency to 8.

7. Input character d and add the frequency value “d” to

2 and the number of frequencies to 9.

8. Input character a and add the frequency value “a” to

4 and change the number of frequencies to 10.

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

352

Figure 1. Huffman Tree

The compression result of the string "gadjahmada"

produces 100 11 00 101 0101 which amounts to 70 bits.

3.3 Comparison With Exponential Method

To compare the two algorithms, we must define the

criteria. The criteria of the two algorithms are as follows:

1. Ratio Of Compression (RC)

a. Rc Adaptive Huffman Coding=80/25=3,2

b. RC Sequitur = 80/64= 1,25

2. Compression Ratio (CR)

a. CR Adaptive Huffman Coding =70/80 x

100%=31,2%

b. CR Sequitur = 64/80 x 100% = 80%

3. Space Savings (SS)

a. SS Adaptive Huffman Coding = 100% - 31,2% =

68,8%

b. SS Sequiture = 100% - 80% = 20%

Tabel IV. Criteria

Criterion Weight AHC Sequitur

RC 0,25 3,2 1,2

CR 0,25 0,3 0,8

SS 0,5 0,7 0,2

Total Point ∑(N)B 1

Point Algoritma AHC

Point Algoritma Sequitur

Based on the comparison using the exponential

comparison method of both algorithms are obtained

results that sequitur algorithm more efficiently used in

compressing text files than adaptive Huffman coding

algorithm.

4 Experimental Results

In an experiment to compare sequitur algorithm with

Adaptive Huffman Coding algorithm done with an

application, wherein the application there is a button to

input and text file and compress text file based on an

algorithm and compare both algorithms, here's how it

looks:

Figure 2. Comparison Process With Application

IV. CONCLUSION

Based on the exponential comparison method the

sequitur algorithm is more effective in compressing the

text file than the adaptive Huffman coding algorithm.

The sequitur algorithm will compress if there is a loop of

words in the text file that is entered and will stop

processing if the non-terminal symbol used has reached

non-terminal Z. Adaptive Huffman coding algorithm

compresses Huffman tree shapes that will be changed

from binary, in adaptive Huffman tree coding will

continue to grow and will stop if all text has been

entered.

V. REFERENCES

[1]. S. Porwal, Y. Chaudhary, J. Joshi, and M. Jain,

"Data Compression Methodologies for Lossless

Data and Comparison between Algorithms," vol. 2,

no. 2, pp. 142–147, 2013.

= (3,2)0,25 + (0.3)0,25 +

(0,7)0,25

= 2,9

 = (1,2)0,25 + (0,8)0,25 +

(0,2)0,25

= 2,6

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

353

[2]. C. G. Nevill-Manning and I. H. Witten,

"Identifying Hierarchical Structure in Sequences:

A linear-time algorithm," J. Artif. Intell. Res., vol.

7, pp. 67–82, 1997.

[3]. Darma Putra, Pengolahan Citra. Yogyakarta: C.V

ANDI OFFSET, 2010.

[4]. S. D. Nasution and Mesran, "Goldbach Codes

Algorithm for Text Goldbach Codes Algorithm

for Text Compression," vol. 4, no. December, pp.

43–46, 2016.

[5]. S. D. Nasution, G. L. Ginting, M. Syahrizal, and R.

Rahim, "Data Security Using Vigenere Cipher and

Goldbach Codes Algorithm," Int. J. Eng. Res.

Technol., vol. 6, no. 1, pp. 360–363, 2017.

[6]. E. Jubilee, Rahasia Manajemen File. Elex Media

Komputindo, 2010.

[7]. D. Salomon and G. Motta, HandBook Of Data

Compression. Springer.

[8]. M. S. Prof.Dr. Ir. Marimin, Pengambilan

Keputusan Kriteria Majemuk. Jakarta: Grasindo,

2004.

