Synthesis, Characterization and Evaluation of Antifungal and Antibacterial Activities of Some Quinazoline Derivatives

A. A. Kale1*, K. M. Durgade2

1Post Graduate Department of Chemistry, Annasaheb Awate College, Manchar, Ambegaon, Pune, Maharashtra, India
2Department of Chemistry, Prof. Ramkrishna More College, Aakurdi, Pune, Maharashtra, India

ABSTRACT

Present work includes synthesis of 2-[(2-(piperazin-1-yl)quinazolin-4-yl)amino]ethan-1-ol (IV), N2, N4-di p-tolyquinazoline-2,4- diamine (V) and N2, N4-bis(4-chlorophenyl)quinazoline-2,4-diamine (VI) which are quinazoline derivatives and out of these three quinazoline derivatives N2, N4-bis(4-chlorophenyl)quinazoline-2,4-diamine (VI) have shown “antifungal activity” against fungus “Aspergillus flavus” and “antibacterial activity” against bacteria “Pseudomonas”. At first 2-amino benzoic acid react with urea at temperature 130 °C to 140°C to gives Quinazolin-2,4-diol (I) which on further reaction with phosphorus oxychloride at 150 °C for 24 hr. to gives second product 2,4-dichloroquinazoline (II). Then 2,4-dichloroquinazoline (II) reacts with 2-aminoethan-1-ol and piperazine to gives 2-[(2-(piperazin-1-yl)quinazolin-4-yl)amino]ethan-1-ol (IV) and when p-toluidine react with 2,4-dichloroquinazoline (II) to gives N2, N4-di p-tolyquinazoline-2,4-diamine (V) and again this 2,4-dichloroquinazoline (II) react with p-chloroaniline to gives N2, N4-bis(4-chlorophenyl) quinazoline-2,4-diamine (VI) which characterized by I. R., 1HNMR and 13CNMR.

Keywords: Quinazoline Derivative, Antifungal Activity, Antibacterial Activity, N2, N4-Di P-Tolylquinazoline-2, 4-Diamine, N2, N4-Bis (4-Chlorophenyl) Quinazoline-2, 4-Diamine, Quinazolin-2, 4-Diol, 2,4-Dichloroquinazoline

I. INTRODUCTION

Quinazoline is N-containing heterocyclic compound, till date many researcher have synthesized many derivatives of Quinazoline and all these derivatives have shown different pharmacological activities like anti-bacterial [3], antimicrobial [4], anti-inflammation [6], antifungal [8], anti-hypertension [10], anti-oxidation [12] analgesia [13], anticonvulsant [14], antimalarial [15], anti-tumor [16], anti-tuberculosis [17], anti-HIV activity [18] etc. Medicinal chemists synthesized a variety of quinazoline compounds with different biological activities by installing various active groups to the quinazoline moiety using developing synthetic methods. And the potential applications of the quinazoline derivatives in fields of biology, pesticides and medicine have also been explored. This process involved the construction of a starting general structure with a planar heterocyclic ring (quinazolinepyrrodo [2, 3-d] pyrimidine ring), selected as the central fragment that can act as a scaffold to carry two functionalized branches at positions 2 and 4, which are equivalent or different with the aim of evaluating the possible influence of the symmetry/asymmetry on the target activity. We have synthesized derivatives of Quinazoline which are 2-[(2-(piperazin-1-yl)quinazolin-4-yl)amino]ethan-1-ol (IV), N2, N4-di p-tolyquinazoline-2,4-diamine (V) and N2, N4-bis(4-chlorophenyl)quinazoline-2,4-diamine (VI) In first derivative that is 2-[(2-(piperazin-1-yl)quinazolin-4-yl)amino]ethan-1-ol (IV) we have substituted second and fourth position of quinazoline by piperazine and aminooethan-1-ol respectively while in second derivative that is N2, N4-di p-tolyquinazoline-2,4-diamine (V) by p-toluidine and in third derivative N2, N4-bis(4-chlorophenyl)quinazoline-2,4-diamine (VI) by p-chloroaniline. For synthesis of Quinazoline derivatives we have used piperazine, aminooethan-1-ol, p-toluidine and p-chloroaniline because individually they shows important pharmacological and other activities therefore at the time of synthesis we expected that after synthesis of these quinazoline derivatives they will be show some pharmacological activities and after evaluation of biological activities of these synthesized derivatives of quinazoline, result is that N2, N4-bis(4-
chlorophenyl)quinazoline-2,4-diamine (VI) have shown “antifungal activity” against fungus “Aspergillus flavus” and “antibacterial activity” against bacteria “Pseudomonas”.

II. RESULT AND DISCUSSION

Target molecules which synthesized are 2-{{2-(piperazin-1-yl)quinazolin-4-yl}amino}ethan-1-ol (IV), N², N⁴-di-p-tolyquinazoline-2,4-diamine (V), and N², N⁴-bis(4-chlorophenyl)quinazoline-2,4-diamine (VI). At first 2- amino benzoic acid react with urea at temperature 130 ºC to 140ºC to gives Quinazolin-2,4-diol (I) which on further reaction with phosphorus oxychloride at 150 ºC for 24 hr. to gives second product 2,4-dichloroquinazoline (II). Then 2,4-dichloroquinazoline (II) reacts with aminoethan-1-ol and piperazine to gives 2-{{2-(piperazin-1-yl)quinazolin-4-yl}amino}ethan-1-ol (IV) and when p-toluidine react with 2,4-dichloroquinazoline (II) to gives N², N⁴-di-p-tolyquinazoline-2,4-diamine (V) and again this 2,4-dichloroquinazoline (II) react with p-chloroaniline to gives N², N⁴-bis(4-chlorophenyl) quinazoline-2,4-diamine (VI) which characterized by I. R., ¹HNMR and ¹³CNMR. Out of these derivatives of quinazoline N², N⁴-bis(4-chlorophenyl)quinazoline-2,4-diamine (VI) have shown “antifungal activity” against fungus “Aspergillus flavus” and “antibacterial activity” against bacteria “Pseudomonas”.

Present trends are to synthesize a large variety of quinazoline compounds with different biological activities by installing various active groups to the quinazoline moiety using developing synthetic methods therefore we have introduced piperazine, aminoethan-1-ol, p-toluidine and p-chloroaniline groups at second and fourth position of quinazoline because all these four groups have important pharmacological and other activities and have synthesized derivatives of quinazoline and tested for antifungal and antibacterial activities and we have got successful result according to our expectation.

Scheme 1.

\[
\begin{align*}
\text{2-aminobenzoic acid} & \quad \q
III. EXPERIMENTAL

Anthranilic acid, Urea, phosphorus oxychloride, N, N-dimethyl formamide, Triethyl amine, diisopropyl ethyl amine, 2-aminoethan-1-ol, piperazine, p-toluidine, p-Chloroaniline, ethanol obtained from local dealer.

Analytical TLC was performed on Silica plates- GF254 (Merck) with visualization by UV or in iodine. Melting points were determined by using thieis tube. 1H-NMR (in CDCl3 / DMSO-d6) spectra were recorded using Bruker 400 with TMS as internal standard. 13C were recorded by using DMSO solvent. All the chemicals used were of Laboratory grade.

Synthesis and characterization of Quinazolin-2, 4-diol (I) [25]: A mixture of Anthranilic acid (50g, 0.36 mol) and urea (109 g, 1.82 mol) in a round bottom flask equipped with mechanical stirrer was heated without solvent at 135 to 140°C using an air condenser for 3h. The melted reaction mixture was poured into sodium hydroxide (1000 mL, 1N) solution and any insoluble material removed by filtration. The mixture was then acidified with HCl (2 N), to yield 2,4-dihydroxy quinazoline as a white precipitate which was collected by filtration and dried. Yield 70%; m. p. >250°C.

IR max cm$^{-1}$: 3428 (OH, broad), 3079 (Ar C-H), 1604 (C=N), 1H NMR (DMSO-d6) δ ppm: 7.56 (t, 2H, Ar-H), 7.98 (d, 1H, Ar-H), 9.19 (s, 1H, Ar-H), 7.17 (t, 1H), 9.16 (1H, S), 13CNMR (DMSO-d6) (δ/ppm): 121.11 (Ar C-H), 115.39 (Ar C-H), 142.59 (Ar C-H), 135.02 (Ar C-H), 130.42 (Ar C-H).
Synthesis and characterization of 2, 4-dichloroquinazoline (II) [20] : A mixture quinazolin-2, 4-diol (6.0 milimole), POCl3 (5 ml) and N, N-DMF (catalytic amount) was stirred and heated for 150ºC under reflux for 24 h. The solvents were removed under vacuum then cold water (0ºC, 25 ml) and chloroform (25 ml) were added. The organic layer was washed with water (3X20 ml) and dried over anhydrous sodium sulfate. The solvent was removed under vacuum and compound obtained used for further analysis.

IR max cm⁻¹: 755 (C=Cl), 3029 (Ar C), 1340(Ar CH), 1270 (Ar CH), 115.35 (Ar C), 122.33 (Ar C), 126.96 (Ar C), 134.97 (Ar C), 14.90 (Ar C), 150.31 (Ar C), 162.85 (Ar C)

H NMR (CDCl₃) δ ppm: 7.18 (m, 1H), 7.61 (m, 2H), 7.87 (d, 1H), 13C NMR (CDCl₃) δ (ppm): 115.35 (Ar C), 122.33 (Ar C), 126.96 (Ar C), 134.97 (Ar C), 14.90 (Ar C), 150.31 (Ar C), 162.85 (Ar C)

Synthesis[20] and characterization of 2-[2-chloroquinazolin-4-yl] amino] ethan-1-ol (III) : Taken mixture of 1 eq. of 2, 4-dichloroquinazoline & 1.2 eq. of 2-aminoethan-1-ol in 100 ml two necked round bottom flask with appropriate requirement. Added to it (for 1 g sample required 10 ml ethanol) ethanol & DIPEA (3 eq.) at 0ºC then stir for 6 hr. The progress of reaction checked by TLC. After completion of reaction, distilled out it completely then added dichloromethane to it & washed with water. The Organic layer dried over sodium sulphate & concentrated to obtain off white solid. The obtained off white solid purified by hexane washing. Dried it & used for further analysis.

H NMR (CDCl₃-d1) δ ppm: 3.66 (1H, s), 3.61 (2H, t), 3.58 (2H, t), 8.25 (1H, s), 8.28 (1H, d), 7.58 (2H, d), 3.63 (1H, d), 7.29 (1H, m), 7.08 (1H, t), 3.67 (2H, t), 3.56 (2H, t)

C NMR (CDCl₃-d1) (δ/ppm): 161.73 (Ar C), 157.4 (Ar C), 150.65 (Ar C), 134.00(Ar CH), 127.01 (Ar CH), 126.43(Ar CH), 114.09 (Ar C-), 59.22 (aliphatic CH₂), 44.07 (aliphatic CH₂)

IV. Synthesis of 2-[(2-piperazin-1-yl)quinazolin-4-yl amino] ethan-1-ol (IV)

Taken mixture of 1 eq. of 2-[2-Chloroquinazoline-4-yl] amino] ethan-1-ol & piperazine (1.2 eq.) in 100 ml two necked round bottom flask as per requirement. Added to it THF & DIPEA at 0ºC & then reaction mixture heated at 80ºC for 16 hr. The progress of reaction was checked by TLC. After completion of reaction diluted it with ethyl acetate & washed with water. The organic layer dried over sodium sulphate & concentrated to obtain white solid which is purified by hexane washing. Dried it, washed it & used for further analysis & reaction.

H NMR (400MHz, DMSO-d6) δ ppm: 5.04 (1H, s), 1.05 (1H, s), 8.11 (1H, s), 2.99 (4H, t), 2.88 (4H, t), 7.50 (1H, d), 7.30 (1H, m), 7.29 (1H, m), 7.08 (1H, t), 3.67 (2H, t), 3.56 (2H, t)

C NMR (DMSO-d6) (δ/ppm): 160.12 (quinazoline C), 160.04 (quinazoline C), 158.53 (quinazoline C), 110.8 (quinazoline C), 125.05 (quinazoline CH), 132.31 (quinazoline CH), 132.4 (quinazoline CH), 123.04 (quinazoline CH), 59.17 (aliphatic CH₂), 43.59 (aliphatic CH₂), 43.00 (aliphatic CH₂), 41.93 (aliphatic CH₂)

Synthesis and characterization of N₂,N⁴-di-p-tolylquinazoline-2,4-diamine (V) [20] : A mixture of 5 (5.0 mmol), the respective Toluidine (12 mmol), equimolecular amounts of triethylamine, and ethanol (15 mL) was heated at 70ºC for 5 h with stirring. The solvent was removed under vacuum and chloroform was added in solution and extracted with water. Product precipitated out in water layer because it is insoluble in water as well as in chloroform. Water layer washed with chloroform and filtered. Obtained water insoluble product dried, purified and characterized by using IR, HNMR and 13CNMR.

IR max cm⁻¹: 3300 (-NH), 1616 (-C=N), H NMR (DMSO-d6) δ ppm: 7.99 (1H, s), 8.51(1H, d), 7.84 (2H, d), 7.62 (1H, d), 6.27 (1H, s), 7.58 (2H, d), 7.42 (2H, d), 5.38 (2H, s), 2.5 (4H, s), C NMR (DMSO-d6) (δ/ppm): 46.33(aliphatic C), 103.06 (quinazoline C), 115.05 (quinazoline C), 125.12 (Ar C), 126.71 (quinazoline C), 129.67 (quinazoline C), 137.06 (quinazoline C), 174.68 (Ar C), 180.18 (Ar C), 180.99 (quinazoline C), 182.77 (quinazoline C), 183.04 (quinazoline C), 188.31 (quinazoline C)

Synthesis and characterization of N₂, N⁴-bis(4-chlorophenyl)quinazoline-2,4-diamine (VI) [20] : A mixture of 5 (5.0 mmol), the respective p-chloroaniline (12 mmol), equimolecular amounts of triethylamine, and ethanol (15 mL) was heated at 70ºC for 5 h with stirring. The solvent was removed under vacuum and chloroform was added in solution and extracted with water. Product...
precipitate out in water layer because it is insoluble in water as well as chloroform. Water layer washed with chloroform and filter. Obtained water insoluble product dried, purified and characterized by using IR, 1H-NMR and 13C-NMR

IR max cm⁻¹: 750 (C-Cl), 3015(Ar C-H), 1615 (C=O), 3360 (-NH), 1H-NMR (400MHz, DMSO-d1) δ ppm : 8.03 (1 H, d), 8.17 (2H, t), 8.01 (2H, d), 7.66 (1H, t), 7.62 (2H, d), 7.49 (1H, s), 7.25 (1H, s), 7.08 (2H, d), 6.60 (2H, d), 13C NMR (CDCl3-d1) (δ/ ppm): 109.56 (quinoxaline CH), 116.26 (quinoxaline CH), 119.5 (Ar-C), 121.99 (quinoxaline CH), 124.22 (quinoxaline CH), 125.44 (Ar-CH), 126.40 (Ar-C), 127.92 (Ar-C), 129.12 (Ar-C), 128.99 (Ar-C), 130.51 (quinoxaline-C), 131.57 (quinoxaline-C), 134.53 (quinoxaline-C)

Antifungal studies:
The newly synthesized compounds were screened and tested for their antifungal activity against “Aspergillus flavus” in DMSO solvent by well plate method. Sterile N.A. and P.D.A. plates were inoculated with Aspergillus flavus and make well with sterile cork borer. And then loaded 20 microlitre of compound (0.01 g in 1 ml DMSO solvent) then this plate was dried by placing in an incubator at 37°C for 1 hr., prepared each well was labeled. The temperature was controlled and maintained at 37°C for 24 hr. The Inhibition zone were measured and compared with the controls. Zone diameter: 2 mm

Antibacterial:
The newly prepared compounds were screened for their “antibacterial activity” against “Pseudomonas aerogenosa” in DMSO by well plate method. Sterile N.A. and P.D.A. plates were inoculated with “Pseudomonas aerogenosa”. Made a well with sterile cork borer. Loaded 20 microlitre of compound (0.01 g in 10 ml DMSO solvent) then this plate was dried by placing in an incubator at 37°C for 1 hr, wells were made and each well was labeled. A control was also prepared in and maintained at 37°C for 1 day. Inhibition zone were measured and compared with the controls. Zone diameter: 2 mm

Acknowledgement:
The authors are thankful to Dr. Manohar G. Chaskar (Principal, Prof. Ramkrishna More College, Aakurdi) and Dr. P. N. Gaikawad (Principal, Annasaheb Awate College, Manchar, Pune, India) for providing research environment and facility for research work. Authors are also thankful to Dr. Nitin Ghorpade (Principal, Waghire College, Saswad, Pune), Manasi Joshi, Datta Ukale, Anil Shelake, Dattatray Gaikawad, Komal Waykar for help to complete our research work.

IV. CONCLUSION

We have synthesized 2-[(2-(piperazin-1-yl)quinazolin4-yl)amino]ethan-1-ol (IV), N₂, N₄-di-p-tolylquinazoline-2,4-diamine (V) and N₂, N₄-bis(4-chlorophenyl)quinazoline-2,4-diamine (VI) and out of these quinazoline derivatives N₂, N₄-bis(4-chlorophenyl)quinazoline-2,4-diamine (VI) have shown “antifungal activity” against fungus “Aspergillus flavus” and “antibacterial activity” against bacteria “Pseudomonas” and all these compounds will be tested for various biological activities like anti-cancer, anti-inflammation, anti-bacterial, analgesia, anti-virus, anticytotoxic, anti-spasm, anti-tuberculosis, anti-oxidation, antimalarial, anti-hypertension, anti-obesity, anti-psychotic, anti-diabetes, etc.

V. REFERENCES

Pandeya SN, Sriman D, Nath G, Clercq E D. Synthesis antibacterial antifungal and anti-HIV evaluation of Schiff and Mannich bases of isatin derivatives with 3-amino-2-...
methylmercaptopquinazolin-4(3H)-one.

[20]. Maria Font a, Alvaro González a, Juan Antonio Palop b, Carmen Sanmartín b a Section de Modelización Molecular, Dpto de Química Orgánica, Facultad de Farmacia, Universidad de Navarra, Irunlarrea 1, E-31008 Pamplona, Spain b Sección de Síntesis, Dpto de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Navarra, Irunlarrea 1, E-31008, Pamplona, Spain

[21]. Juan J. Marugán, a, Wei Zheng, a, Omid Motabara, b, Noel Southall, a, Ehud Goldin, b, Wendy Westbroek, b, Barbara K. Stubbsfield, b, Ellen Sidransky, b, Ronald A. Aungst, b, Wendy A. Lea, a, Anton Simeonova, a, William Leister, a, and Christopher P. Austina, Evaluation of Quinazoline Analogues as Glucocerebrosidase Inhibitors with Chaperone Activity. J. Med. Chem. 2011, 54, 1033–1058 DOI: 10.1021/jm1008902

