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ABSTRACT 
 

The problem with survival estimation using traditional life-table method alone is not only grouping of survival times, 

but also its insensitivity to existence of frailty in population. In this work, an approach has been proposed for the 

analysis of time from infection to occurrence of an event vis-à-vis the contributions of frailty along with some 

covariates. The approach involves the use of nonparametric product limit otherwise known as the Kaplan-Meier 

(KM) to estimate individual survivals and the use of frailty estimation method to estimate the hazard. In a simulation, 

the life-table and product limit methods were compared using the standard error estimates and plots of the empirical 

survivor function. While empirical estimates did not show significant differences, the product limit plot is more 

informative than the life table plots. The result of hazard estimation shows that event is largely caused by the 

baseline hazard with significant contribution from frailty and little contribution from age. There is also significant 

association between individual’s events possibly as a result of frailty. This procedure will find wider application in 

survival estimation in a population-based setting.  
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I. INTRODUCTION 

 

Survival data are summarized through the estimate of 

survival function and hazard function. Several non-

parametric methods which do not require any specific 

assumption about the underlying distribution of survival 

time have been discussed by several authors during the 

past six decades or so Ramadurai et al( 2011). Many 

researchers have written reports about life table. Berkson 

et al(1950), Gehan, (1969). Petoet al (1976) has 

published an outstanding review of statistical methods 

related to clinical trials. The development of the field 

that have had the most thoughtful impact on clinical 

trials are the Kaplan-Meier (Product limit) (1958) 

method for estimating the survival function. A method 

developed by Mantel (1966) was used to compare two 

survival patterns in the life table analysis. This method 

was used by Myers (1969) to analyze the survival 

experience for male patients with localized cancer of 

rectum diagnosed in Connecticut from 1935 – 1944 and 

1945 – 1954. 

 

2.0 Existing Work 

 

2.1   The Empirical Survivor Function 

 

The survivor function ( )S t , is the probability that an 

individual survives for a time greater than or equal to t. 

The function can be estimated  

 

 
Number of Individuals with survival times tˆ

Number of Individuals in the data set
S t




                                           (2.1) 

or ˆ ˆ( ) 1 ( )S t F t  , where F̂ (t) is the empirical 

cumulative distribution function, that is, the ratio of the 

total number of individuals alive at time t to the total 

number of individuals in the study. The estimated 

survivor function ˆ( )S t  is assumed to be a constant 

between two adjacent death times, and so a plot of ˆ( )S t  

against t is a step-function. The function which 

decreases immediately after each observed survival time. 
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2.2 Life-Table estimate of the survivor function 

 

The life-table estimate of the survivor function is 

obtained by first dividing the period of observation into 

series of time intervals. Suppose that in the jth interval, 

the probability of death is estimated by dj/
'

jn , so that the 

corresponding survival probability is 
' '( ) / .j j jn d n  now 

consider the probability that an individual survives 

beyond time 
' , 1, 2,........, ,kt k m that is, until sometime 

after the start of the kth interval. This will be the product 

of the probabilities that an individual survives beyond 

the start of the kth interval and through each of the k – 1 

preceding intervals, and so the life-table estimate of the 

survivor function is given by   

 

'

'
1

*( ) ( )
k

j j

j j

n d
S t

n


  (2.2) 

' '

1, 1,2,........, .k kt t t k m    

On the assumption that censoring occur uniformly over 

the intervals. A graphical estimate of the survivor 

function will then be a step-function with constant 

values of the function in each time interval. However, 

life table method requires grouping of survival times 

which may lead to loss of information and possible 

biasness. The method only finds the estimates of the 

survivor function. It does not address such important 

aspects as randomness and covariate effects. 

 

2.3 Kaplan Meier (product-limit) estimate of the 

survivor function 

 

To obtain the Kaplan- Meier estimate, a series of time 

intervals is constructed, as for the life-table estimate. 

However, each of these intervals is designed to be such 

that one death time is contained in the interval, and this 

death time is taken to occur at the start of the interval.  

We now make the assumption that the deaths of the 

individuals in the sample occur independently of one 

another. Then, the estimated survivor function at any 

time, t, in the kth constructed time interval from t(k) to 

t(k+1) , k = 1, 2, …., r, where t(j+1)is defined to be ∞, will 

be the estimated probability of surviving beyond t(k). 

This is actually the probability of surviving through the 

interval from ( )kt to 

 ( ) ( 1), (1)
ˆ1,2,...., , ( ) 1k kt t t k r withS t for t t       

and all preceding intervals, and leads to the Kaplan-

Meier estimate of the survivor function, which is given 

by 

  *

1

ˆ
k

j j

j j

n d
S t

n

 
   

 
  (2.3) 

 

For ( ) ( 1), (1)
ˆ1,2,...., , ( ) 1k kt t t k r withS t for t t     , 

and where t(r+1) is taken to be ∞. However, this method 

alone cannot be used to estimate patients survival 

alongside the influence of covariates and frailty at a 

particular event time t. 

The standard error for the Kaplan-Meier estimate is 

given by 

    
 

1

2

1

ˆ ˆ
k

j

j j j j

d
Se S t S t

n n d

  
  

  
 for    1k k

t t t


 

 (2.4) 

While the standard error (se) of the life table estimate is 

given by 

    
 

1

2

*

1

ˆ
k

i

j j j j

d
Se S t S t

n n d

  
  

    
 , Collet (2003)

 (2.5) 

 

II. METHODS AND MATERIAL 
 

3.0 Methodology 

 

3.1 Simulation study 

 

A situation similar to real population-based is here 

simulated from which data in appendix B2 is generated; 

a sample of which is presented below. The covariates 

used in the simulation are; id, time, status, age, sex, and 

frail. The id is exponentially distributed with parameter 

0.05, time is also exponentially distributed with 

parameter 0.01, status has a poisson distribution with 

parameter 0.76, age is exponentially distributed with 

parameter 0.02, sex has poisson distribution with 

parameter 1.74, and finally the frail having a gamma 

distribution with mean fixed to one (1) for identify 

ability (which is a constraint in frailty estimation, Rotolo 

et al (2012)) and variance 0.47. 
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The simulation now gives a survival data set from a 

population with exponentially distributed baseline 

hazard (due to the distribution of the survival times) and 

gamma distributed frailty condition. 

 

Below is a sample from the 500 generated survival data. 

 

 
 

Each observation corresponds to α, the variable id being 

the patient’s code. The time (in days) from infection of 

an event or censoring is stored in time, while status is 1 

when event has occurred and 0 for censored 

observations. Two other covariates may contribute: age, 

the age of the patient in years, and sex, being 1 for males 

and 2 for females. The variable frail is the frailty value 

for each individual which is assumed to have a gamma 

distribution.  

 

The hazard of event (presented in frailty model form) 

will be modeled as a function of the patient’s age and 

sex. An R package parfm function is used to do the 

analysis. 

 

3.2.0 Estimation of Frailty 

 

Estimates of , ,   are obtained by maximizing the 

marginal log-likelihood; this can be easily done if one is 

able to compute higher order derivatives 
   q

L of the 

Laplace transformed up to  1max ,..., sq d d  

 

3.2.1 Gamma Frailty 

 

A gamma frailty term is a random variable 

 *~ Gamz  with probability density function  

  
 

 

1 1
1

exp /
, 0,

1

z u
f z

  







 


       

(3.1) 

where   is the gamma function. It corresponds to a 

Gamma distribution Gam  ,  with  fixed to 1 as 

stated earlier Collet (2003), Rotolo et al (2012) for 

identifiability. Its variance is then  . The associated 

Laplace transform is given by 

    
1

1 , 0,L s s s


    (3.2) 

and it is easy to show that, for 1,q   

            
1

0

1 1 1 .
q

q qq

l

L s s l L s 






 
    

 


 (3.3) 

Therefore, in equation (1.5), we have (i.e. the log-

likelihood) 

 

          
1

0

1
log 1 log 1 log 1

q
q q

l

L s q s l 






 
       

 


, Rotolo et al (2012) (3.4) 

 

For the Gamma distribution, the Kendall’s Tau Hougaar 

et al (2000), which measures the association between 

any two event times from the same cluster in the 

multivariate case, can be computed as 

  0,1
2





 

                                   
(3.5) 

 

III. RESULT AND DISCUSSION 
 

4.1 Plots of the Empirical Survivor Function Using 

the Product-Unit (K-M) Method 

 

 
Fig. 4.1: KM Plot of Empirical Survivor Function, when 

sample size n = 50 
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Fig. 4.2: KM Plot of Empirical Survivor Function, when 

sample size n = 100 

Fig. 

4.3: KM Plot of Empirical Survivor Function, when sample 

size n = 285 

 
Fig. 4.4: KM Plot of Empirical Survivor Function, when 

sample size n = 500 

 

4.2 Plots of the Empirical Survivor Function Using the 

Life-table Method 

 
Fig 4.2a. plot of the survivor function; sample size n=50 

 

 
Fig 4.2b ; plot of the survivor function; Sample size n=500; 

interval length is 29 

 
Fig 4.2c. plot of the survivor function, sample size n=500 ; 

interval length is 50 

(in days) 

(In days) 

(in days) 

(in days) 
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Fig 4.2d. plot of the survivor function, sample size n=500 ; 

interval length is 100 

 

4.3 Discussion 

 

When the sample size is at 50, 100n n  the empirical 

survivor function (esf) plot using K-M method displays 

good fit(fig 4.1, 4.2, 4.3, and 4.4). It shows decreasing 

step function behavior with survival function value (1) 

one at zero (0) survival time. As the survival time 

increases, the survivor function decreases with constant 

values between two adjacent death times. The plot of the 

function display similar behavior and pattern even with 

large samples as in 500n  and 285n  . The plot of 

the function maintained it defined characteristics i.e. 

decreasing step function. 

 

On the other hand, when sample size is not large such as 

n=50, the life-table plot displays the decreasing, step 

function behavior (fig 4.2a ). But when sample size is 

large as n=500, the life-table plot though displays 

decreasing behavior, it is less informative about event 

times, i.e. it does not show the character of being 

constant between two adjacent event times. Moreover, 

when sample size is large, if intervals are not long 

enough, the life-table curve will be less meaningful. 

 

Table 4.1: Comparison of some survival estimates and 

their standard error (from the results of the simulation ) 

of life-table vs Kaplan-Meier (product limit) 

 
 

A comparative look at the results of the survivor 

estimates table 4.1 using the two methods (from results 

of the simulation) shows that when the number of 

patients at risk are 437, 405, 206 and 176, the respective 

life table survival estimates are 0.950, 0.913, 0.642 and 

0.583; while that of K – M are 0.932, 0.910, 0.606 and 

0.549 respectively.  

 

The standard error, which is an essential aid for 

interpretation of precision, for the said values are; 0.009, 

0.013, 0.024 and 0.025 for the life table estimation. 

While the K–M has 0.012, 0.013, 0.025 and 0.026, 

which does not show much difference between the 

survival estimates of the methods and so is the case with 

the standard error estimates. 

 

4.4 Result of the frailty estimation alongside 

other covariates 

 

Frailty – Gamma 

Baseline hazard – Exponential 

Loglikelihood – 1625.279 

 

 

The frailty is estimated alongside age and sex. The result 

(4.4) shows that age could have a significant impact on 

the hazard of total blindness given the frailty while it is 

not affected by sex. The heterogeneity parameter  i.e. 

the frailty is estimated at 0.005 leading to a Kendall’s 

tau equal to 0.002, a value which indicates a very close 

association between two event times (in this case event 

between two individuals) in the cluster. The conclusion 

(in days) 
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therefore is that event in this study is largely caused by 

the baseline hazard and frailty. The frailty has a gamma 

distribution evidently because the generated data is a 

mixture of exponentially distributed times with Poisson 

status or censoring indicators. The baseline hazards has 

exponential distribution due to the fact that the survival 

times (observations) are generated exponentially. 

 

IV. CONCLUSION 
 

The form of the estimated survivor function and the 

shape of its plot in life table method is sensitive to the 

choice of intervals. Though the survival estimates and 

the standard error estimates obtained using the two 

methods did not show much differences where the 

numbers at risk are equal, the empirical survival plot 

using Kaplan-Meier method is more informative, i.e. it 

tells more about event times and displays the good 

feature of being constant between two adjacent event 

times. Also in the simulated population with 

exponentially distributed baseline hazard and gamma 

frailty, the event of interest is found to be largely caused 

by the baseline hazard with significant contribution of 

frailty and the covariate age. The covariate sex was not 

found to have any influence on the occurrence of the 

event. 
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