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ABSTRACT 
 

Current microarray technology provides ways in which to get time-series expression knowledge for learning a large 

vary of biological systems. However, the expression knowledge tends to contain respectable noise that as a result 

might deteriorate the clustering quality. We tend to propose a knowledge-based clustering technique to include the 

information of gene-gene relations into the clustering procedure. Our technique first obtains the biological roles of 

every gene through a web mining process, next to teams genes supported their biological roles and also the gene 

ontology, and last applies a semi-supervised clustering model wherever the oversight is provided by the detected 

gene groups. Under the steerage of the information, the clustering procedure is able to address knowledge noise. We 

tend to evaluate our technique on an in public offered data set of human fibroblast response to serum. The 

experimental results demonstrate improved quality of clustering compared to the clustering strategies without any 

previous knowledge. 

Keywords : Microarray Technology; Clustering; Data Analysis Gene Expression. 

 

I. INTRODUCTION 

 

Clustering genes into groups with similar behaviour is 

one of the key processes for time series gene expression 

data analysis, which provides a way to examine the 

deferent patterns of gene modules and study unknown 

genes based on known genes of the same group. A 

number of existing approaches are available to cluster 

time series gene expression data such as HAC [5, 13, 9], 

k-means [12], SVD and HMM [10]. However, these 

approaches construct models merely from the gene 

expression data, in which considerable data noise might 

be present due to the experiment design and may 

deteriorate the clustering quality. 

 

Gene Expression 

 

Gene expression is the process by which information 

from a gene is used in the synthesis of a functional gene 

product. These products are often proteins, but in non-

protein coding genes such as transfer RNA (tRNA) or 

small nuclear RNA (snRNA) genes, the product is a 

functional RNA. 

The process of gene expression is used by all known 

life—eukaryotes (including multicellular organisms), 

prokaryotes (bacteria and archaea), and utilized by 

viruses—to generate the macromolecular machinery for 

life. 

 

Several steps in the gene expression process may be 

modulated, including the transcription, RNA splicing, 

translation, and post-translational modification of a 

protein. Gene regulation gives the cell control over 

structure and function, and is the basis for cellular 

differentiation, morphogenesis and the versatility and 

adaptability of any organism. Also it depends on the 

state of activator RNA. Gene regulation may also serve 

as a substrate for evolutionary change, since control of 

the timing, location, and amount of gene expression can 

have a profound effect on the functions (actions) of the 

gene in a cell or in a multicellular organism. 

 

In genetics, gene expression is the most fundamental 

level at which the genotype gives rise to the phenotype, 

i.e. observable trait. The genetic code stored in DNA is 

"interpreted" by gene expression, and the properties of 

the expression give rise to the organism's phenotype. 
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Such phenotypes are often expressed by the synthesis of 

proteins that control the organism's shape, or that act as 

enzymes catalysing specific metabolic pathways 

characterizing the organism. Regulation of gene 

expression is thus critical to an organism's development
 

[1] 

 
DNA Microarrays and Protein to Protein Interaction 

(PPI). A gene is a stretch of DNA that encodes 

information. Genomic DNA consists of two anti parallel 

and reverse complementary strands, each having 5' and 

3' ends. With respect to a gene, the two strands may be 

labeled the "template strand," which serves as a 

blueprint for the production of an RNA transcript, and 

the "coding strand," which includes the DNA version of 

the transcript sequence. Several steps in the gene 

expression process may be modulated, including the 

transcription, RNA splicing, translation, and post-

translational modification of a protein. Gene regulation 

gives the cell control over structure and function, and is 

the basis for cellular differentiation, morphogenesis and 

the versatility and adaptability of any organism. 

 

Gene expression is the process by which information 

from a gene is used in the synthesis of a functional gene 

product. These products are often proteins. The process 

of gene expression is used by all known life eukaryotes 

(including multicellular organisms), prokaryotes 

(bacteria and archaea), and utilized by viruses to 

generate the macromolecular machinery for life.  

 

1.1 DNA Microarray Technique 

 

A DNA microarray (also commonly known as DNA 

chip or biochip) is a collection of microscopic DNA 

spots attached to a solid surface. Scientists use DNA 

microarrays to measure the expression levels of large 

numbers of genes simultaneously or to genotype 

multiple regions of a genome. Each DNA spot contains 

picomoles (10−12 moles) of a specific DNA sequence, 

known as probes (or reporters or oligos). These can be a 

short section of a gene or other DNA element that are 

used to hybridize a cDNA or cRNA (also called anti-

sense RNA) sample (called target) under high-stringency 

conditions. Probe-target hybridization is usually detected 

and quantified by detection of fluorophore-, silver-, or 

chemilumine science-labeled targets to determine 

relative abundance of nucleic acid sequences in the 

target. The original nucleic acid arrays were macro 

arrays approximately 9 cm × 12 cm and the first 

computerized image based analysis was published in 

1981. [2] 

 

An array is an orderly arrangement of samples where 

matching of known and unknown DNA samples is done 

based on base pairing rules. An array experiment makes 

use of common assay systems such as micro plates or 

standard blotting membranes. The sample spot sizes are 

typically less than 200 microns in diameter usually 

contain thousands of spots. 

 

Thousands of spotted samples known as probes (with 

known identity) are immobilized on a solid support (a 

microscope glass slides or silicon chips or nylon 

membrane). The spots can be DNA, cDNA, or 

oligonucleotides. These are used to determine 

complementary binding of the unknown sequences thus 

allowing parallel analysis for gene expression and gene 

discovery. An experiment with a single DNA chip can 

provide information on thousands of genes 

simultaneously. An orderly arrangement of the probes 

on the support is important as the location of each spot 

on the array is used for the identification of a gene. The 

DNA Micro array structure is as follows. 

 
DNA microarray technology has now made it possible to 

simultaneously monitor the expression levels of 

thousands of genes during important biological 

processes and across collections of related samples. 

Elucidating the patterns hidden in gene expression data 

offers a tremendous opportunity for an enhanced 

understanding of functional genomics. However, the 

large number of genes and the complexity of biological 
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https://en.wikipedia.org/wiki/Genetic_code
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networks greatly increase the challenges of 

comprehending and interpreting the resulting mass of 

data, which often consists of millions of measurements. 

 

Gene Ontology (GO, http://www.geneontology.org/) 

provides standard terminology for biological processes 

and constructs a hierarchical structure of these biological 

processes. Figure 1 shows a fragment of the ontology 

structure defined by GO. If the biological processes of 

some genes can be determined, the relation-ship among 

these genes can be detected based on the relationship 

among their biological processes defined by GO. For 

example, if both gene A and gene B are involved in the 

\regulation of cell proliferation", they are likely to be in 

one group. And, these gene-gene relationships can be 

further incorporated into clustering models. Thus we 

design a web-knowledge-based clustering model to 

retrieve the biological processes of genes from the web 

and further help clustering. Current DNA microarray 

technology provides ways to conduct large-scale 

experiments in a wide range of biological systems. 

Many problems such as biological interpretation, disease 

development and drug discovery can thus be further 

studied by analyzing the data generated from the 

experiments. The microarray data consists of expression 

levels of many genes over a set of consecutive time 

points, also referred as time series (or time course) gene 

expression data. The expression data allow scientists to 

examine the gene expression changes over time and 

obtain more discoveries regarding to the time course. 

 

Many believe that genes in the same cluster have similar 

biological roles [5, 13]. Here, a biological role is 

formally described as the biological process associated 

with a gene. Their results [5, 13] also illustrated that this 

knowledge about genes can be inferred from the 

clustering results. For example, gene KITLG is involved 

in the “cell proliferation" process. If another gene is in 

the same cluster as KITLG, then that gene is also likely 

to be involved in “cell proliferation". Inspired from this 

fact, we and other [3, 6, 1] believe that if one can find  

the biological processes associated with the genes and 

the relations among the processes, then this type of prior 

knowledge can be used to guide the clustering process in 

order to generate more meaningful clusters. 

 
Figure 3. Cell Proliferation 

 

Our model (shown in Figure 3) starts with a web 

knowledge discovery process mining genes' biological 

processes from web gene databases and specialized web 

search engines. The gene-gene relationships are then 

detected by examining relationships among genes' 

biological processes based on GO. Finally, it applies a 

semi-supervised clustering model where the supervision 

is provided by the detected gene-gene relationships. We 

evaluate our approach on a time series data set of human 

fbroblast response to serum provided by [7]. The results 

show that our knowledge-based clustering model 

generates clusters of better quality compared to the 

original clustering model without any prior knowledge. 

Some papers such as [8] aim at predicting biological 

processes for unknown genes, and thus classify time 

series gene expression data based on GO annotations. 

Our work aims to analyze any type of gene expression 

data, and the biological processes are only used as the 

supplementary knowledge to improve clustering for 

further research. Some other knowledge-guided 

clustering methods [3, 6, and 1] are available. Our 

approach is deferent at the following two aspects 1) we 

acquire knowledge from PubMed articles instead of 

solely relying on the knowledge from the gene 

information databases. Compared to the latter, the 

former. 

 
Figure 4. Implementation architecture of web-

knowledge-based clustering model for gene expression 

data 
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Serves as a complementary source and may contain 

more up-to-date information about genes; 2) in our 

framework, the supervision on clustering combines both 

constraints and distance learning. 

 

II. Web-knowledge-based Clustering Model 
 

Our web-knowledge-based clustering model, involves 

two processes: a web knowledge discovery process and 

a semi-supervised clustering process. The gene-gene 

relations are obtained from the extracted knowledge 

through the first process, and further serve as an input 

for the clustering process. 

 

2.1 Web Knowledge Discovery of Gene-gene 

relations 

 

Two types of web sources are available to extract the 

biological process of known genes: web gene databases 

and web biological documents. 

 

Extract Biological Processes from Web Gene Databases 

Many web gene databases provide GO annotations for 

known genes, i.e., they list the biological processes and 

other properties of known genes in GO terms. One can 

query on gene names or gene symbols to obtain their 

biological processes. In addition, such gene information 

is usually given in a format, which eases the automatic 

biological process extraction. An example of such a web 

database is Entrez Gene1, which is used as the source 

for finding GO annotations. A web page wrapper is built 

to extract biological process information from Entrez 

Gene. For simplicity, hand-crafted rules are used for the 

wrapper of Entrez Gene via observation. Applying a 

well-developed information extraction system such as 

WHISK [11] with a number of training examples to 

build the wrapper is another option, which can make our 

approach more general for any web gene information 

databases. 

 

Extract Biological Process from Web Biological 

Documents Besides the web gene databases, we extract 

the biological processes of genes through specialized 

search engines. PubMed2, an Entrez search engine on 

biomedical documents, is used here. Gene symbols serve 

as keywords for searching, and the abstracts of the 

search results are analyzed for biological process 

extraction. 

We select the sentence co-occurrence method as our 

extraction method; because it achieves balanced 

precision and recall compared to the other two methods, 

namely, sentence classfication and abstract co-

occurrence [4]. Sentence classification gives the highest 

precision but the lowest recall and abstract co-

occurrence gives the highest recall but the lowest 

precision. We also seek ways to improve the precision of 

the sentence co-occurrence method. For example, 

stemming and word distance are used to obtain higher 

extraction accuracy. 

 

We analyze each sentence of the text documents. For 

each biological process p in GO, we determine if the 

sentence s contains p for a gene g in GO as follows: 

 

If s contains g, got 2); otherwise, return FALSE; 2) A 

stop list of words such as "of", "to", "the", which does 

not indicate any meaning, are removed from s as well as 

p; 3) When p contains more than one terms, stemming (a 

method to convert a term into its root) is applied to both 

s and p. 4) If s contains all the terms in p and any two 

consecutive terms in p appear in s with less than three 

other terms in between, return TRUE; otherwise, return 

FALSE. 

 

If an extraction of a biological process p for gene g is 

confirmed in a sentence s, both g and the terms 

appearing in p are highlighted in s for further analysis. 

An example of an extraction is shown as follows: DDB2, 

while participating in DNA repair, functions as a 

negative regulator of apoptosis, and may there-fore have 

a pivotal role in regulating immune response and cancer-

therapeutic ", we extract several biological processes 

including “DNA repair", “negative regulation of 

apoptosis" and “immune response" for gene DDB2. All 

these terms are highlighted. The highlighted area makes 

users easy to determine if an extraction is correct or not. 

The correct extractions are selected and combined with 

the biological processes obtained from Entrez Gene. 

Detect Functional Groups from Web Knowledge 

Based on the biological processes extracted from the 

previous two steps (2.1.1 and 2.1.2), we detect 

functional gene groups according to their biological 

processes. Gene g strongly belongs to the group of 

biological process p if it is associated with p based on 

the extracted knowledge. Gene g weakly belongs to the 

group of p if the biological Process p
1
 associated with g 
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is a parent, child or sibling of p. For example, KITLG is 

a strong member of group “cell proliferation" because its 

biological processes contain “cell proliferation"; while 

CCND1 is a weak member of this group because its 

biological process “cytokines is" is a child of “cell 

proliferation" according to GO. The distinction between 

the strong members and the weak members for a group 

provides a way to calculate weighted cluster centers. 

 

2.2   Knowledge-based Clustering 

 

Suppose ng functional groups are detected from the 

extracted knowledge, the challenge of utilizing these ng 

groups for the clustering model remains. We choose the 

semi-supervised K-means method [2] to incorporate the 

knowledge with the clustering procedure, because it is a 

well-designed algorithm combining both constraint-

based supervision and distance-based supervision 

provided by the given knowledge. The semi-supervised 

method improves the standard K-means clustering by 

incorporating this supervision into the initialization 

process and the distance measure based on a 

probabilistic framework, which is explained in detail 

below. 

 

Initialization Instead of randomly initializing the 

clustering centroid, we estimate the initial cluster 

centroid from the detected nf functional groups. Since 

many specific biological processes are usually extracted 

from the web, the number of all existing functional 

groups nf tends to be quite large. Thus, it is usually the 

case that nf> K, where K is the number of desired 

clusters. We use a weighted first-farthest traversal 

algorithm to select K functional groups that are farthest 

distributed and with considerable group size. Then the 

cluster centroid is initialized with the weighted means of 

these K groups: 

 

 
 

Where Fk-sand Fk-w are the sets of strong members and 

weak members respectively in the kth selected functional 

group Fk. The constants w1 and w2 satisfy w1> w2. The 

symbols gi and gj refer to genes. The formula shows that 

gi  is a strong member of Fk while gj is a weak member. 

The condition w1> w2makes the centroid of Fk biased 

toward the strong members. 

Constraint-sensitive distance measure the constraints 

induced by the extracted knowledge are enforced into 

the clustering procedure. The semi-supervised K-means 

modifies the distance measure so that the assignments 

convicting with the provided knowledge are penalized. 

In this paper, if genes in the same functional group are 

assigned to different clusters, the distance measure is 

modified to penalize this violation (so called violation of 

must-link constraints). Suppose Dik is the distance of a 

gene gi from the cluster centroid of Ck.  

 

The standard  K-means assigns gene gi to cluster Ck 

with the minimum Dik for any Ck. Instead, we assign 

each gene gi to Ck to minimize the distortion N EW Dik, 

which is defined as: 

 
Where the penalty function is: 

 
Here, Fk is the kth functional groups that we used for 

initialization and Ck is the cluster corresponding to Fk. 

The iterated conditional modes (ICM) applied in [2] is 

also used in this paper to 2nd the optimal assignment 

based on the distance measure. 

 

In this paper we only penalize the violation for the must-

link constrains but do not consider cannot-link 

constraints, while both are penalized in the document 

clustering application in [2]. This is because our gene 

functional groups might be overlapped to some extent, in 

which case genes might still have similar biological roles 

even if they are in deferent functional groups. Therefore, 

the cannot-link constraints are not applied in this gene 

application. 

 

Adaptive distance learning Instead of using static 

distance measure, a parameterized distance measure is 

used to incorporate the user-specified constraints and 

data variance. The medication is exactly the same as [2], 

so we skip the details here. In essence, the adaptive 

distance learning brings similar genes closer and pushes 

dissimilar genes further apart. 
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As a whole, combined with these three improvements, 

the gene expression data clustering via semi-supervised 

K-means is summarized in the chart  

 

III. Experimental Results 
 

We evaluated our model on a time series gene 

expression data set (¯bobcats response to serum 

provided by [7]). This data set contains the expression 

changes of 517 genes corresponding to 497 unique genes 

during the ¯rest 24 h of the serum response in serum-

starved human fibroblasts. The expression changes are 

given as the ratio of the expression level at the given 

time point to the expression level in serum-starved 

fibroblasts. 

 

First, we obtained the standard gene symbols for the 

corresponding gene names in the data from Entrez Gene. 

For example, “SEPP1" is the gene symbol for the gene 

name “H.sapiens mRNA for selenoprotein P". 

 

Second, we extracted the GO annotations of biological 

processes for the given genes via the method in Section 

2.1.1. Then we extracted biological processes from 

biomedical articles via the process in Section 2.2.2. 

There were totally 1081 

 

Clustering Gene Expression Data via Semi-

supervised K-means 

 

Input: Set of gene expressions{gi }iN 1 , functional 

groups {Fk }nk f 1 containing both strong and weak 

members, desired number of clusters K. 

Output: Disjoint K-partitioning of {gi  }iN 1 

 

1.Select K farthest distributed groups from the n f 

functional groups via the weighted farthest-first traversal 

algorithm. 

 

2. For each k • {1, K}, initialize the centroid of cluster 

Ck with 

 

 
3.For each i •{1,...N } , calculate the parameterized 

distance from gene i to cluster Ck, i.e., New _ DikA . If 

gene i is closest to its own cluster, do nothing; otherwise, 

move it into the closest cluster. 

 

4.Reestimate each cluster  centroid with update  

parameter matrix   

 

5. Repeat 3& 4 until no genes moving from one cluster 

to another. 

 

Extractions and 596 were correct, which gave a 

precision rate of 55.1%. Users were responsible to 

select the correct extractions. This task of selection was 

not difficult with the highlights of the gene symbols and 

biological processes. The functional groups were then 

detected from these two sources of web knowledge 

based on GO (Section 2.1.3). A total number of 188 

groups were detected. 

 

Third, we set the desired number of clusters K as 4, 5, 6 

and 7 respectively. The weighted farthest first traversal 

algorithm selected K functional groups. Then we started 

the semi-supervised clustering. During the initialization 

of the clustering, the constants (w1, w2) were set to be 

(1, 0.5) in this study, which satisfied w1 > w2 so that 

strong members dominated the functional group that 

they belong to. 

 

The parallel coordinate scheme was used to present the 

clustering results, where different lines stand for 

different genes and different colors for different clusters. 

Figure 3 shows the clustering results of the standard K-

means and our method with the case K = 6. It indicates 

that although the main patterns of the up-regulated 

genes are discovered in both methods, the standard K-

means fails to distinguish two different patterns of the 

down-regulated genes that the knowledge-based 

clustering succeeds to separate (the light-blue cluster 

and the red cluster in Figure 3 (b)). 

 

We also investigated the biological meaning of partial 

clustering results for these two methods with the case K 

= 6. The first sixty genes were examined 
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Figure 5. Clustering results when K = 6: (a) K-means; (b) 

semi-supervised K-means  

and the clusters assigned to them by using standard K-

means are compared with those by using our method. 

Three clusters (say C1, C2 and C3) were identified with 

standard K-means and two clusters (C1 and C2) were 

identifying with our method for these sixty genes. While 

fifty-three of the genes were equally(identically) 

assigned to C1 and C2 by using these two methods, 

seven genes were assigned into C3 by using standard K-

means and they were still in C1 and C2 by using our 

method. Among these seven different classified genes, 

they were unknown genes, which had no biological 

information.  

 

The other two known genes are CPTI and LUM, 

members of C1 and C2 respectively with our method but 

members of C3 with standard K-means. We further 

examined the biological process of these two genes. 

LUM is involved in visual perception and the members 

in C2 (e.g. CYP1B1 and FBN1) are also involved in 

visual perception. This proves that LUM is likely to be a 

member of C2 as our method clustered instead of a 

member of C3 as standard K-means clustered. Similarly, 

CPTI is involved in amino acid metabolism, which 

belongs to cellular metabolism, while other members of 

C1 (e.g. SEPP1 and PIN1) also have the biological 

processes (response to oxidative stress for SEPP1 and 

protein folding) that also belong to cellular metabolism. 

Thus, CPTI is likely to be a member of C1 also as our 

method clustered. 

 

To mathematically evaluate the clustering results, two 

metrics, namely homogeneity (H) and separation (S) are 

introduced: 

 

 
 

The metric H is calculated as the average distance 

between each data point and the center of the cluster it 

belongs to. The metric S is calculated as the weighted 

average distance between cluster centers. The metric H 

reflects the compactness of the clusters while S reflects 

the overall distance between clusters 

 

IV. CONCLUSIONS 
 

This paper given a general framework of web-

knowledge-based clustering for gene expression 

information. The online was used because the supply for 

gathering helpful info to guide clustering. Biological 

processes were extracted from each the web gene 

databases and search engines on biomedical documents. 

Functional groups of genes were then detected from the 

extracted biological processes supported GO. Finally, 

the semi-supervised K-means was applied to include the 

information into the clustering model. The experimental 

results showed that our information-based clustering 

model outperformed the clustering model with none 

knowledge. 
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