
IJSRST1738216 | Received: 25 Nov 2017 | Accepted : 208 Dec 2017 | November-December-2017[(3)8: 938-940]

© 2017 IJSRST | Volume 3 | Issue 8 | Print ISSN: 2395-6011 | Online ISSN: 2395-602X
Themed Section: Science and Technology

 938

Single Queue Based Algorithm for Mutual Exclusion iIn Distributed Systems
Ashish Chauhan

1
, Chandrabhushan Prasad

2
, Kanupriya

3

1
Department of Computer Science & Engineering, IIMT College of Engineering, Greater Noida, Uttar Pradesh, India

2
Department of Computer Science & Engineering, IIMT College of Engineering, Greater Noida, Uttar Pradesh, India

3
Department of Electronics & Communication, Shri Ram Group of colleges, Muzaffarnagar, Uttar Pradesh, India

ABSTRACT

Distributed System is a class of computing systems in the field of computing where the hardware or software

components of the system are located at networked locations. Computers that are the part of this system can

communicate and coordinate their action only by exchange of messages in the system. Mutual exclusion is a

mechanism in which multi-process can make access to the single sharable resource without affecting the integrity of

the resource. The number of messages among the sites of the distributed system is one of the very prime concerned

issue in analysing the performance of any algorithm. Also the amount of data structures needed in the one of prime

consideration in the performance analysis of algorithm. The algorithm proposed in this paper reduces the number of

messages to a large extend and also there is need of a single queue as a data structure.

Keywords : Distributed System, Critical Section, Single Queue Algorithm, Non-Token, Mutual Exclusion.

I. INTRODUCTION

A system is said to be distributed if in the system the

hardware and software components are located at

network computers and the only way by which these

components can communicate is through the exchange

of messages among themselves. The prime limitation of

Distributed system is the Absence of shared memory as

well as the absence of global clock. One of the very

interesting problem with which the distributed system

has to deal with is the problem of mutual exclusion.

Mutual exclusion is a mechanism in which multi-process

can make access to the single sharable resource without

affecting the integrity of the resource. The requests are

needed to be serialized in such a way that the requests of

all the sites must be fulfilled along with the non-

affecting the integrity of the shared resource. Thus it is

quite clear that the action which is being performed on

the shared object by the process must need to be atomic.

The problem of Mutual Exclusion frequently arises in

Distributed System whenever concurrent access to

shared resources by several sites is involved. To

maintain the consistency of a system, it is necessary that

the shared resources will be accessed by single user at a

time. Distributed Mutual Exclusion algorithm can be

classified into two types –

1.1 Token based algorithm: A unique type of algorithm

in the field of implementation of mutual exclusion in the

distributed systems is Token based Algorithm. In this

approach a unique token is shared among all the sites

and a site is allowed to enter its Critical Section only if it

possesses the valid token. Also one thing is to be

considered that the token based algorithm uses

Sequences no, which distinguish the current request

from previous request for the token, every time a site

makes a request for a token, it increments its sequences

no counter and merge it with request messages. Example

of Token based is Raymond’s algorithm (log (N)

messages) and Suzuki Kasami Algorithm (N messages).

1.2 Non-Token based algorithm: Another class of

mutual exclusion algorithm is the Non-Token based

algorithm. In this approach a site communicate with set

of others site of its concern to decide who should

execute critical section next. This algorithm uses the

unique concept of the Timestamp to order the request for

Critical section in order to avoid the conflict between

sites. Example of Non-Token based are Lamport`s

algorithm 3(N-1) messages and Ricart-Agrawala`s

algorithm 2(N-1) messages

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

939

II. OBJECTIVES OF MUTUAL EXCLUSION IN

DISTRIBUTEDSYSTEMS

The primary objective of a Mutual Exclusion algorithm

is to maintain Mutual Exclusion; that is, to guarantee

that only one request accesses the Critical section at a

time. In addition, the following characteristics are

considered important in a Mutual exclusion algorithm:

2.1 Freedom from Deadlocks

Two or more sites should not endlessly wait for

messages that will never arrive.

2.2 Freedom from Starvation

A site should not be forced to wait indefinitely to

execute Critical section while other sites are repeatedly

executing Critical section. That is, every requesting site

should get an opportunity to execute a Critical Section in

a finite time.

2.3 Fairness

Fairness dictates that request must be executed in the

order they are made (or the order in which they arrive in

the system). Since a Physical Global clock does not exist,

time is determined by Logical clocks. Note that Fairness

implies freedom from starvation, but not vice-versa.

2.4 Fault Tolerance

A Mutual Exclusion algorithm is fault tolerant if in the

wake of failure, it can re-organise itself so that it

continues to function without any disruptions.

III. PERFORMANCE METRICS OF MUTUAL

EXCLUSION ALGORITHM

3.1 Response Time

It is the time interval a request waits for its Critical

Section Execution to be over after its Requested

messages have been sending out. Smaller the Response

Time betters the performance.

Figure 1. Response Time

3.2 Synchronization Delay

The time interval after the site exits the critical section

and before the next site enters the critical section is

called synchronization delay. Smaller the

synchronization delay better the performance is.

Figure 2. Synchronization Delay

3.3 Number of Messages necessary per critical

section Invocation

Before entering in the Critical section, site sends a

request messages to all the sites and after the execution

of Critical section site send a reply messages to all other

sites. Lesser the No. of Messages necessary or Critical

section invocation betters the Performances.

3.4 System Throughput The rate at which system

executes the request for Critical Section isknown as

System Throughput. Maximum the System Through put

better the Performances.

System Throughput= 1/ (SD + E)

Where SD is Synchronization Delay and E is Average

Critical Section Execution Time.

IV. PROPOSED WORK

System Model: The system is consisting of N sites, Out

of those N sites some or all may want to execute in the

critical section. The system consists of only a single data

structure i.e. denoted as Request_Queue of the System

which is responsible for holding the request of all the

sites that are willing to execute in the critical section.

The requests are arranged in the increasing order of their

time-stamp.

At any time site may have several request for critical

section. A Request_Queue queues up these request and

serves them one at a time.

A site can be in one of the three states-

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

940

1. Requesting Critical Section:-the site is blocked

and cannot make further requests for Critical section

2. Idle:-In idle state site is executing outside its

critical section (no conflict).

3. Executing:-the site is executing in its critical

section.

V. ALGORITHM

5.1 Requesting the critical section.

1. When a site Si wants to enter the CS, it sends

REQUEST (tsi, i) message to all the sites in its request

set Ri as well as to the designated Request_Queue of the

system (tsi is the timestamp of the request).

2. When a site Sj receives the REQUEST (tsi, i) message

from site Si, it sends a REPLY message to site Si if site

Sj is neither requesting nor executing the CS or if site Sj

is requesting and Si`s request's timestamp is smaller than

Sj's own request's timestamp. The request is deferred

otherwise it returns a REPLY message to Si.

5.2 Executing the critical section.

1. Site Si enters the CS when the two following

conditions hold:

a) [L1:] Si has received a REPLY message from all

other sites.

b) [L2:] Si`s request is at the top Request_Queue.

5.3 Releasing the critical section

1. When site Sj exits the CS, it sends REPLY messages

to all the deferred requests and removes its entry from

the top of Request_Queue.

When a site exiting the CS removes its request from its

Request_Queue, The next entry of the queue come at the

top of the queue, enabling it to enter CS. The algorithm

executes CS requests in the increasing order of

timestamps.

VI. RESULTS AND ANALYSIS

Suppose The system is composed of N Sites, and the

space complexity for storing one queue in the system is

of order 1. Thus the below is the comparison of the

proposed algorithm is with the major algorithms studied

in the field of Mutual exclusion in the distributed

systems.

Table 1.

VII. CONCLUSION

This algorithm implements the Mutual Exclusion in a

system by arranging the request of the multiple sites of a

system in a single data structure known as the

Request_Queue. The modification is made by the

advantage arrangement of the single data structure ie

The Request_Queue. Thus for the system of N sites the

space complexity is reduced to 1/N for the system as

compared to the previous generated algorithms. All The

sites executes in an increasing order of their timestamp.

Sites only communicate by passing messages as well as

to the Request_Queue. Proposed algorithm uses Single

Data Structure, operates faster and has a distributed

control.

VIII. REFERENCES

[1]. G. Ricart and A. K. Agrawala, &ldquo, "An

Optimal Algorithm for Mu tual Exclusion in

Computer Netw orks &rdquo, Co mm".ACM, vol.

24, no. 1, pp. 9-17, Jan. 1981.

[2]. J.-H . Yang and J. An derson, &ldquo,Time

Bounds for Mutual Exclusion and Related

Problem s &rdquo, Proc. 26th Ann. ACM Symp.

"Theory of Co mputing, pp. 224-2 33," May 1994.

[3]. D.A grawal, A.El. Ab badi, "An efficie nt and

fault toler ant solution for distributed mutual

exclusion"ACM Transaction on Co mputer

Systems 9 (1) (1991) 1-20.

[4]. Ashish Chauhan, Kanupriya, "Centralized

Approach to mutual Exclusion in Distributed

Systems" International Journal of Advanced

Research in Computer and Communication

Engineering Vol. 4, Issue 12, December 2015

