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ABSTRACT 
 

Grain yield of rice (Oryza sativa L.) has four components: panicle number, total spikelet number per panicle (TSN), 

grain weight and spikelet fertility. There is wide variation in TSN among cultivated rice varieties and it is one of the 

targets of breeding programs to improve rice yield. Many hypotheses have been proposed to explain 

ecophysiological process that determines spikelet number per unit area. Nitrogen is one of the most yield-limiting 

nutrients in crop production, and its proper management is essential for improving grain yield. Grain number is 

linearly correlated with total plant N content. Nitrogen fertilizer might affect CKs levels to increase rice flower 

numbers. To identify the loci controlling panicle architecture, QTLs for panicle traits such as number of primary or 

secondary branches and spikelet number per primary or secondary branch have been mapped and studied. QTLs for 

TSN have been identified using various segregating populations, including F2 populations, recombinant inbred lines 

(RILs), and doubled haploid (DH) lines. 

Keywords: Oryza sativa L., total spikelet number (TSN), QTLs, recombinant inbred lines (RILs) 

 

I. INTRODUCTION 

 

Rice (Oryza sativa L.) is one of the most important crops 

in the world, especially in Asia. To meet the increasing 

demands of the booming population and urbanization of 

Asia, it is estimated that a 50%  ncrease in rice yield is 

needed (Murchie et al., 2009). Therefore, finding traits 

that substantially increase rice yield is an urgent issue. 

Rice inflorescence architecture is a key agronomic factor 

that determines grain yield, and thus has been a major 

target for crop improvement. Rice inflorescence, called 

the panicle, consists of a rachis, primary branches, 

secondary branches, and spikelets. The primary branches 

are arranged in a spiral phyllotaxy, and spikelets are 

produced on both the primary and secondary branches. 

Understanding the genetic basis of inflorescence 

architecture will contribute to improving crop grain 

yield (Akter et al., 2014).Grain yield of rice (Oryza 

sativa L.) has four components: panicle number, total 

spikelet number per panicle (TSN), grain weight and 

spikelet fertility. There is wide variation in TSN among 

cultivated rice varieties and it is one of the targets of 

breeding programs to improve rice yield. However, 

genetic analysis of TSN is difficult because it is a 

complex trait controlled by multiple genes and 

influenced by environmental conditions. Quantitative 

trait locus (QTL) analysis using DNA markers has 

recently made it possible to understand the genetic basis 

of TSN and other complex traits. QTLs for TSN have 

been identified using various segregating populations, 

including F2 populations, recombinant inbred lines 

(RILs), and doubled haploid (DH) lines (Hittalmani et 

al.,  2003; Kobayashi et al.,  2004; Mei et 

al.,  2005; Xing et al.,  2002; Yagi et 

al., 2001; Zhuang et al., 1997; Zou et al.,  2005). Many 

hypotheses have been proposed to explain 

ecophysiological process that determines spikelet 

number per unit area. Those hypotheses may be 

classified into the following three types. The first is that 
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the spikelet number is proportional to nitrogen (N) 

content of plant (product of percentage N and crop 

biomass per unit area) at around spikelet formation stage 

(Murayama, 1969; Hasegawa et al., 1994; Kobayashi 

and Horie, 1994; Horie et al., 1997). The second is that 

the spikelet number is proportional to biomass 

production during the period from panicle initiation to 

heading (Kropff et al., 1994). The third is that the final 

spikelet number is represented as the difference between 

the numbers of spikelets differentiated and degenerated; 

the former is proportional to the crop-N content at the 

late spikelet differentiation stage and the latter to crop 

growth rate (CGR) during the period from the late stage 

of spikelet differentiation to heading (Wada, 1969). 

 

II. METHODS AND MATERIAL 
 

A. The Effect of Low Planting Density on the 

Spikelet Number 

 

Whole rice plants, including panicles, leaves and stems, 

are harvested at the yellow ripening stage and made into 

whole-crop silage to feed to cattle. A salient problem 

with whole-crop rice silage is that some of the grain 

eaten by the animals is excreted in feces without being 

digested, causing a loss of nutrients (Koga et al., 2003; 

Matsuyama et al., 2005; Yamamoto et al., 2005; Shinoda 

et al., 2007; Shinde et al., 2008; Katoet al., 2009; Feng 

et al., 2011). To solve this problem, ‘Tachisuzuka’ was 

developed and released as the first rice cultivar with 

improved feed value and sugar content due to a radical 

decrease in grain yield (Kouno, 2011; Matsushita et al., 

2011, 2012). This promising characteristic results from 

defective elongation of the primary branches at the basal 

part of the panicle axis, owing to ashort panicle 1 (sp1) 

mutant gene (Li et al., 2009). Tachisuzuka’ has been 

developed for silage use with improved feeding value 

due to a radical decrease in spikelets. We investigated 

the effect of planting density on the spikelet number in 

‘Tachisuzuka’ to find out how seed yields of this 

cultivar can be increased by means of cultivation 

methods. Moreover, the spikelet number increased by 

67% under the low planting density. This result implies 

that the efficiency of seed production of ‘Tachisuzuka’ 

could be improved by low planting density through an 

increase in spikelet number per unit area(Kei et al., 

2013 ).  

 

B. The Effect of Nitrogen Fertilizer to Increase 

Spikelet Number Per Panicle 

Nitrogen is one of the most yield-limiting nutrients in 

crop production, and its proper management is essential 

for improving grain yield. Grain number is linearly 

correlated with total plant N content (Makino, 2011). 

Nitrogen fertilizer might affect CKs levels to increase 

rice flower numbers. CKs regulate rice branch and 

flower numbers (Barazesh and McSteen, 2008). CKs 

oxidase/dehydrogenase (OsCKX) is an enzyme that 

degrades CKs and, in many plant species, is responsible 

for the majority of metabolic CKs inactivation (Werner 

et al., 2003). Reduced expression ofOsCKX2 causes 

CKs accumulation in inflorescence meristems and 

increases the number of reproductive organs and yield 

(Ashikari et al., 2005). The effects of nitrogen fertilizer 

on panicle branching may be mediated by CKs, in which 

accumulation in the inflorescence meristem can regulate 

panicle development, resulting in increased numbers of 

flowers and branches. Adenosine phosphate-

isopentenyltransferase (IPT) catalyzes the rate-limiting 

step of CKs biosynthesis.The results showed that 

OsIPTs were markedly increased, and CKs accumulated 

in panicle when nitrogen fertilizer was applied. CKs 

biosynthesis in the roots and leaves was not up-regulated 

by nitrogen. These results suggest that nitrogen fertilizer 

enhances local CKs synthesis to increase flower 

numbers in the panicles of rice (Chengqiang et al.,  

2014 ). 

 

C. OsSPS1, a Gene Increases Spikelet Number Per 

Panicle   

Analysis of an NIL carrying a chromosome segment 

containing QTLph1 of Kasalath revealed that OsSPS1, a 

gene encoding sucrose phosphate synthase (SPS), is the 

target gene underlying QTLph1 (Ishimaru et al., 2004). 

SPS catalyzes the conversion of fructose 6-phosphate 

and UDPglucose into sucrose 6-phosphate, and it is 

generally considered to be the rate-limiting enzyme in 

sucrose synthesis (Huber, 1983). OsSPS1 is one of the 5 

isogenes encoding SPS in the rice genome. Expression 

analysis revealed that OsSPS1 is preferentially 

expressed in the source tissue, particularly in leaf blades, 

and it plays a dominant role in sucrose synthesis in the 

source leaf blades among the 5 isogenes for SPS 

(Okamura et al., 2011). Analysis of the distribution of 

dry matter revealed that a higher source-leaf SPS 
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activity in NIL-SPS1 at the panicle formation stage 

might promote the distribution of dry matter to panicles 

and increase the number of secondary rachis branches. 

(Hashida et al., 2013). 

 

D. QTL for Spikelet Number 

To identify the loci controlling panicle architecture, 

QTLs for panicle traits such as number of primary or 

secondary branches and spikelet number per primary or 

secondary branch have been mapped and studied 

(Ando et al., 2008; Yamagishi et al., 2002). Several 

QTLs for TSN in rice have also been identified from 

wild relatives O. rufipogon,  O. nivara and O. 

glumaepatula ( Brondani et al., 2002; Li et 

al., 2006;  Moncada et al., 2001; Onishi et 

al., 2007;  Septiningsih et al., 2003; Thomson et 

al., 2003; Xiao et al., 1998; Xiong et al., 1999). The 

QTLs detected in these studies, which were located 

throughout all 12 rice chromosomes, have provided 

useful information with which to survey the genes that 

govern TSN within different populations. Additionally, 

five QTLs for TSN—QSpp8 on chromosome 

8, qSPP1 on chromosome 1, qSSP2 on chromosome 

2, qSPP3 on chromosome 3 and qSPP7on chromosome 

7 have been mapped as single Mendelian factors 

(Zhang et al., 2006, 2009). Fine maps of three QTLs for 

grain number per panicle and TSN—SPP1 on 

chromosome 1 (Liu et al., 2009) and two QTLs 

(gpa7 and qSPP7) on chromosome 7 (Tian et 

al., 2006; Xing et al., 2008)—have been constructed. 

Furthermore, three QTLs for increasing grain number 

(Gn1a on chromosome 1, Ghd7 on chromosome 7 

andWFP on chromosome 8) have been cloned 

(Ashikari et al., 2005; Miura et al., 2010; Xue et 

al., 2008). 

E. Importance Of IR64 Variety  

Since the 1960s, IRRI-bred rice varieties have been 

distributed worldwide and used by both plant breeders 

and farmers. IR64, which was released in 1985, had 

been widely accepted as a high-quality rice variety in 

many countries (Khush, 1987). Because of the wide 

adaptability of IR64, breeding materials with an IR64 

genetic background, such as DH lines, RILs and 

thousands of mutant lines, have been developed for 

research and improvement of rice varieties 

(Guiderdoni et al., 1992; Wu et al., 2005). In the late 

1980s, a breeding program to develop a new plant type 

(NPT) of rice was launched at IRRI with the goal of 

increasing yield potential under tropical environments. 

Unlike IR64, the NPT varieties have several agronomic 

traits inherited from tropical japonica-type varieties: low 

tiller number, low number of unproductive tillers, large 

panicle, thick culm, lodging resistance and large, dark 

green flag leaves (Khush , 1995). Thus, the NPT 

varieties were chosen for experiments designed to 

improve the yield potential of IR64. 
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