
IJSRST184171 | Received : 01 June 2017 | Accepted : 18 June 2017 | May-June-2017 [(3) 4: 536-540]

© 2017 IJSRST | Volume 3 | Issue 4 | Print ISSN: 2395-6011 | Online ISSN: 2395-602X
Themed Section: Science and Technology

 536

A Novel Approach of Design & Implementation of Cloud Big Table
Dr. V. Goutham

Professor and HOD of CSE in Teegla Krishna Reddy Engineering College, Telangana, India

ABSTRACT

Cloud Bigtable, which is sparsely populated table to scale billions of rows and thousands of columns, enabling

storing petabytes or terabytes of data across thousands of commodity servers. Google has had to resolve the

challenges that many companies bearing the difference is the sheer scale of the problem. They‟ve often had to

design entirely new approaches to meet the demand of their businesses. Over the past decade, Google has

developed many traditional solutions to carry their own products and services. They‟ve proposed many of these

internal solutions in white papers and so many have developed into open source projects that now are the

footing of the Hadoop ecosystem. Five foundational Google projects that have changed the era of big data

landscape forever. Many projects at Google store data in Bigtable, including Google MapReduce (Apache

Hadoop), Google Bigtable (Apache HBase), Google “Borg”(Apache Mesos), Google Chubby(Apache Zookeeper),

Google Dremel(Apache Drill). These are just a few examples of the ways Google has set the stage for the Bigdata

revolution. Bigtable has successfully furnished a flexible, high-performance solution for all of these Google

products. In this paper we represent the simple data model provided by Bigtable, which gives clients dynamic

control over data layout and format, features of cloud Bigtable, and we describe the design and implementation

of Bigtable. This paper describes overview of the client API, the underlying Google infrastructure on which

Bigtable depends, fundamentals of the Bigtable implementation; We describe several examples of how Bigtable

is used at Google.

Keywords : Cloud, Hadoop ecosystem, Apache Mesos, MapReduce, Apache Zookeeper, Apache HBase, API,

Bigtable

I. INTRODUCTION

We have designed, implemented, and installed a

distributed storage system for organizing structured

data at Google called Bigtable. Bigtable is intended to

reliably scale to petabytes of data and thousands of

machines. Bigtable has attained several goals: wide-

ranging applicability, scalability, high performance,

and high availability. In many ways, Bigtable look like

a database: it spilts many implementation strategies

with databases. Parallel databases and main-memory

databases have obtained scalability and high

performance, but Bigtable produces a different

interface than such systems. Bigtable doesn't support a

full relational data model; instead of, it provides

clients with a simple data model which supports

dynamic control over data layout and format, and it

allows clients to reason about the locality properties of

the data presented in the underlying storage. Data is

listing using row and column names that can be

arbitrary strings. Bigtable also considered data as un-

interpreted strings, although client frequently

serialize various forms of structured data and semi-

structured data into these strings. Clients can manage

and control the locality of their data through careful

choices in their schemas. At last, Bigtable schema

parameters let clients dynamically control whether to

serve data out of memory or from disk.

II. CLOUD BIGTABLE FEATURES

A quick, fully controlled, massively scalable NoSQL

database service is a Cloud Bigtable. It has several

features such as High Performance, Security &

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

537

Permissions, Low Latency Storage, Global Availability,

Fully Managed, Redundant Autoscaling Storage,

Scaling, HBase Compatible, Seamless Cluster Resizing.

Cloud Bigtable has a big performance under high load

than alternative products. It means, large applications

and workflows are faster, more reliable, and more

efficient running on Bigtable. All big data is encrypted

both in-flight and at rest. We have rich control over

who has access to the data stored in Cloud Bigtable.

Cloud Bigtable utilizes a low-latency storage stack.

Cloud Bigtable is available in all regions around the

world, allowing client to place client's service and

data exactly whereever client want it. Cloud Bigtable

is provided as a fully managed service, meaning you

spend your time developing valuable applications

instead of configuring and tuning database for

performance and scalability. Furthermore, Google‟s

own Bigtable operations team monitors the service to

safeguard issues are addressed quickly. Cloud Bigtable

is construct with a redundant internal storage strategy

for giant durability. You don‟t need to configure

separate storage or disks, and you only pay for the

amount of storage what you are using. During

operation without the need for a restart, granting

efficient use of resources and helping client

applications and workflows stay up and running.

Additionally, its native RPC-based API, Cloud

Bigtable provides an HBase-compatible interface. This

authorizes portability of applications between HBase

and Bigtable. Cluster nodes of Cloud bigtable can be

dynamically added and removed in Cluster Resizing.

III. BIGTABLE SYSTEM ARCHITECTURE

Bigtable is a compressed, big performance,

and proprietary data storage system construct

on Google File System, Chubby Lock Service, Sorted

Strings Table simply called SStable (log-structured

storage like Level DB) and a few other technologies of

Google. Bigtable maps two arbitrary string values (row

key and column key) and a timestamp (hence three-

dimensional mapping) into an associated arbitrary

byte array. Cloud Bigtable is not a relational database.

It can be defined as a distributed multi-dimensional

sorted map. Bigtable is constructed to scale into

the petabyte/terabyte range across hundreds or

thousands of machines, to make it easy to add more

machines to the system and automatically start taking

advantage of those resources without any

reconfiguration".

Figure 1.

3.1 Rows

The row keys in a Cloud bigtable are arbitrary strings

currently up to 64KB in size, although 10-100 bytes is

a typical size for most of our clients. Every read/write

of data under a single row key is atomic. By using

rowkey Bigtable manages data in lexicographic order.

The row range for a bigtable is dynamically segregated,

each row range is called a tablet, to help balance the

workload of queires. Tablets are similar to HBase

Regions. As a result, reads of short row ranges are

efficient and typically it need of communication with

only a small number of machines. Clients can utilize

this property by selecting their row keys so that they

obtain good locality for their data accesses.

3.2 Column Families

Column keys that are related to one another are

typically grouped into sets called column families. All

data stored in a column family is normally of the same

type. A column family must be created before data can

be stored under any column key in that column

https://en.wikipedia.org/wiki/Petabyte

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

538

family; after a family has been created, any column

key within the family can be used. It is our main aim

that the number of distinct column families in a table

be small (in the hundreds at most), and that families

scarcely change during operation. Besides, a table may

have an unbounded number of columns.

A column key is identified using the following

syntax: family:qualifier. Column family names must

be printable, but qualifiers may be arbitrary strings.

Figure 2.

3.3 Timestamps

Each cell in a Bigtable can contain numerous versions

of the same data; these versions are represented by

timestamp. Cloud Bigtable timestamps are 64-bit

integers. They can be assigned by Bigtable, in which

case they represent "realtime" in microseconds, or it

can be explicitly assigned by client applications.

Applications that required to avoid collisions must

produce unique timestamps themselves. Different

versions of a cell are stored in decreasing timestamp

order, so that the most recent and latest versions can

be read first. To make the management of versioned

data less onerous, we support two per-column-family

settings that inform Bigtable to garbage-collect cell

versions automatically. The client can specify only

the last n versions of a cell be kept, or only new

versions be kept (e.g., only keep values that were

written in the last seven days). If user storing data for

the most recent metrics in a separate table, so there's

no need to reverse the timestamps.

Writing to Bigtable:

//To Open the Bigtable

Table*T1=OpenOrDie("/bigtable/web/webtable");

// Write a new anchor and delete an old anchor

RowMutation r1(T, "com.cnn.www");

r1.Set("anchor:www.c-span.org", "CNN");

r1.Delete("anchor:www.abc.com");

Operation op;

Apply(&op, &r1);

Reading from Bigtable:

Scanner scanner(T);

ScanStream *stream;

stream=scanner.FetchColumnFamily("anchor");

stream->SetReturnAllVersions();

scanner.Lookup("com.cnn.www");

for (; !stream->Done(); stream->Next())

{

printf("%s %s %lld %s\n",

scanner.RowName(),

stream->ColumnName(),

stream->MicroTimestamp(),

stream->Value());

}

3.4 Load balancing

A Cloud Bigtable table is clubbed into contiguous

blocks of rows, called tablets, to help balance the

workload of queries. These tablets are shared among

different machines, called Cloud Bigtable nodes. In

the original Bigtable whitepaper, these cloud bigtable

nodes are called "tablet servers." The nodes are well

organized into a Cloud Bigtable cluster, which is

related to a Cloud Bigtable instance, a container for

the cluster. Each node in the cluster holds a subset of

the requests to the cluster. By adding more number of

nodes to a cluster, client can increase the number of

concurrent requests that the cluster can manage, as

well as the max throughput for the entire cluster.Each

Cloud Bigtable zone is controlled by a master process.

Master Process balances workload and data volume

within clusters. The master splits busier/larger tablets

into two halfs and merges less-accessed/smaller tablets

together, redistributing them between nodes as

required. If a certain tablet gains a spike of traffic, the

master will split the tablet in two half, then move one

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

539

of the new tablets to another node. Cloud Bigtable

controls all of the splitting, merging, and rebalancing

automatically, saving clients the effort of manually

managing their tablets.

To get the best write performance from Cloud

Bigtable, it's important to distribute writes

simultaneously as possible as across nodes. One of the

best way to attain this goal is by using row keys they

do not follow a predictable order. For example, use

the hash of a string rather than the actual string, as

long as you avoid hash collisions.

IV. API

The Cloud Bigtable API produces functions for

creating and deleting bigtables and column families. It

also provides functions for changing cluster nodes,

table, and column family metadata, such as access

control rights. User applications can write or delete

values in cloud Bigtable, improve values from

individual rows, or iterate over a subset of the data in

a table. The code for writing a table shows that uses a

RowMutation abstraction to perform a series of

updates. The call to Apply operates an atomic

mutation to the Webtable: it adds one anchor to

www.cnn.com and deletes a different anchor. The

C++ code reading from big table shows that uses a

Scanner abstraction to iterate over all anchors in a

particular row. Clients can repear over multiple

column families. There are several mechanisms for

limiting the rows, columns, and timestamps provided

by a scan. For example, we could restrict the scan

above to only produce anchors whose timestamps fall

within ten days of the current time.

V. BUILDING BLOCKS

Bigtable is construct on several other pieces of Google

infrastructure. Bigtable utilizes the distributed Google

File System (GFS) to store data and log files. A

Bigtable cluster operates in a shared pool of machines

that can run a broad variety of other distributed

applications. Bigtable processes often share the same

machines with processes from other applications.

Bigtable be depended on a cluster management system

for scheduling jobs, managing resources on shared

machines, which can deal with machine failures, and

monitoring status of machine. The Google SSTable

file format is used internally to store Bigtable data. An

SSTable produces a persistent, ordered immutable map

from keys to values, where both keys and values are

inconsistant byte strings. Operations are provided to

look up the value associated with a specified key, and

to iterate over all key or value pairs in a specified key

range. Internally, each SSTable contains a sequence of

blocks (each block is 64KB in size, but this is

configurable). A block index (stored at the end of the

SSTable) is used to situate blocks; the block index is

loaded into memory when the SSTable is opened. A

lookup can be performed with a single disk seek: we

will first find the appropriate block by performing a

binary search in the in-memory index, and then

reading the appropriate and suitable block from disk.

Optionally, an SSTable can be completely mapped

into memory, which permits us to perform lookups

and scans without touching disk.

VI. IMPLEMENTATION

The Bigtable implementation has three vital

components: a library that is linked into every client,

one is master server, and many tablet servers. So many

Tablet servers may be dynamically added (or deleted)

from a cluster to accommodate changes in workloads.

The master server is in-charge for assigning tablets to

tablet servers, detecting the addition and validation of

tablet servers, balancing tablet-server load. Master

server is also responsible for garbage collection of files

in GFS. Additionally, it manages schema changes such

as cloud bigtable and column family creations. Each

tablet server handles a set of tablets. The tablet server

manages read and write requests to the tablets which

has loaded, and also distributes tablets that have

grown too large. As with many single-master

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

540

distributed storage systems, client data does not move

through the master: clients can interact directly with

tablet servers for reads and writes. Because Bigtable

clients do not depend or rely on the master for tablet

location information, most clients never interact with

the master. so, the master is lightly loaded in practice.

A Bigtable cluster stores a number of tables. Each

table consists of a group of tablets, and each tablet

consists all data affiliated with a row range. Initially,

each table consists of just one tablet. As a table

increase in size, it is automatically distributed into

multiple tablets, each approximately 100-200 MB in

size by default.

VII. CONCLUSION

In this process of designing, implementing,

maintaining, and supporting Bigtable, we acquired

useful experience and learned various interesting

lessons. we learned that large distributed systems are

vulnerable to many types of pitfalls and failures

assumed in many distributed protocols. Most recent

projects have tackled the problem of providing

distributed storage or higher-level services over broad

area networks, often at Internet scale. This includes

work on distributed hash tables that tackle projects

such as CAN, Chord, Tapestry, and Pastry. These

systems address concerns that do not arise for Bigtable,

such as inflated variable bandwidth, untrusted clients,

or frequent reconfiguration; decentralized control and

Byzantine fault tolerance are not the goals of Bigtable.

We are in the process of performing several additional

Bigtable features, such as sustain for secondary indices

and infrastructure for building cross-data-center

reproduced Bigtables with multiple master replicas.

We also begun deploying Bigtable as a service to

product groups, so individual groups do not need to

support their own clusters. As our service clusters

scale, we will need to deal with more resource-sharing

issues within Bigtable itself. Finally, we have found

that there are significant advantages to building our

own storage solution at Google. We have gotten a

considerable amount of flexibility from designing our

own data model for Bigtable. Additionally, our control

over implementation of Bigtable, and the other

Google infrastructure upon which the Cloud Bigtable

depends on, means that we can remove bottlenecks

and inefficiencies as they arise.

VIII. AUTHORS

Dr V. GOUTHAM is a Professor and Head of the

Department of Computer Science and Engineering at

Teegala Krishna Reddy Engineering College affiliated

to J.N.T.U Hyderabad. He received Ph.D. from

Acharya Nagarjuna University M.Tech from Andhra

University.His research interests are Software

Reliability Engineering, software testing, software

Metrics, and cloud computing.

IX. REFERENCES

[1]. Kumar, Aswini, Whitchcock, Andrew, ed., Google's

BigTable, First an overview. BigTable has been in

development since early 2004 and has been in active

use for about eight months (about February 2005)..

[2]. Chang, Fay; Dean, Jeffrey; Ghemawat, Sanjay; Hsieh,

Wilson C; Wallach, Deborah A; Burrows, Michael

„Mike‟; Chandra, Tushar; Fikes, Andrew; Gruber,

Robert E (2006), "Bigtable: A Distributed Storage

System for Structured Data",(download ebook) (PDF),

Google.

[3]. Chang et al. 2006, p. 3: „Bigtable can be used with

MapReduce, a framework for running large-scale

parallel computations developed at Google. We have

written a set of wrappers that allow a Bigtable to be

used both as an input source and as an output target for

MapReduce jobs‟

[4]. Google File System and BigTable", Radar (World Wide

Web log), Database War Stories (7), O‟Reilly, May

2006.

[5]. "Google Bigtable, Compression, Zippy and BMDiff".

2008-10-12. Archived fromthe original on 1 May 2013.

Retrieved 14 April 2015.

