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ABSTRACT 

 

A statistical theory incorporating deformation, collective and non collective rotational degrees of freedom, 

temperature and angular momentum is used to study the highly excited fused compound system. Temperature 

and spin induced shape transitions are investigated using statistical theory. We have carried out a systematic 

theoretical investigation of shape transition in 98Sr. The prediction of spherical collective shape to triaxial 

deformed shape at low angular momentum and non collective oblate shape at higher angular momentum are 

very much significant in this work 
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I. INTRODUCTION 

 

Experimental investigation on the possibility of 

heating the nucleus to a finite temperature opens for 

us a new dimension in the study of nuclear structure.  

In Heavy ion fusion reactions hot (highly excited) 

residual nuclei with finite angular momentum can be 

formed leading to interesting problems of shape 

evolution in the dual space of angular momentum and 

temperatures. The main experimental techniques used 

in the formation of such highly excited nuclei are 

heavy-ion reactions. In heavy ion reactions, one of the 

main interests is the formation of fused systems in 

highly excited states [1-13]. The large energy 

dissipation of the relative kinetic energy into the 

intrinsic degrees of freedom, and the transfer of 

relative high angular momentum as collective rotation 

of the system are the salient features of these reactions. 

The behaviour of these highly excited fast rotating 

compound systems [9-13] provides important and 

interesting problems for the theoretical investigations. 

Theoretically such finite temperature effects have 

been studied using, mean field theories such as the 

microscopic Hartree-FockBogoliubov cranking theory 

[14] and Landau theory [15] and Mottelson Nilsson 

and Nilsson Strutinsky [16]. 

 

There is considerable interest in the study of the 

structure of nuclei in the mass region A100 due to 

the onset of deformation in the neutron rich nuclei 

with N>60.  These neutron rich nuclei are of special 

interest because they are just at the border between a 

rather spherical and a well deformed shape. 

Theoretically, the region has been studied using 

interacting boson model [17], Nilsson Strutinsky 

Cranking method [18],  statistical theory[18-19]  and 

and Hartree-Fock-Bogolyubov [20]. 

 

In the present work the statistical theory [21-26] 

incorporating deformation, collective and non 

collective rotational degrees of freedom, temperature 

and angular momentum is used to study the highly 

excited fused compound system. Temperature and 

spin induced shape transitions are investigated using 

statistical theory. We shall concentrate on the 

temperature range T = 1 - 3 MeV where the evolution 

of the nuclear shape with temperature and spin and in 

particular the possible shape transitions are of interest. 
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II. THEORETICAL FORMALISM 

 

The eigenvalues generated by Cranked Nilsson Hamiltonian with finite values of the collective frequency  are 

used here. The corresponding partition function is given by        

                           1                                                                  1 

 

The Lagrangian multipliers z, and nconserve the proton and neutron numbers at a given temperature T = 1/. 

The corresponding equations in terms of the single particle energies i() are given by 

 

        2 

        3 

The total angular momentum is given by 

where 
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The system of simultaneous non-linear Eqs. (2), (3) and (4) has to be solved to determine z, and nfor each 

value of  and T. The total energy of the system is obtained as 
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The excitation energy of the system is given by 
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The necessity of renormalizing the total energy does not arise here, since we are interested only in the energy 

difference between the excited and the ground states of the system and not in the actual magnitude of the 

energies. 

 

III. RESULTS AND DISCUSSION 

 

Numerical results are presented by performing 

systematic study of the Sr isotope within the 

framework of Statistical method [21-26]. The angular 

momentum has been generated by adjusting the 

cranking frequency for different deformations. The 

necessity arises due to the fact that calculations are to 

be performed for both non-collective and collective 

states of the nuclei. Calculations are carried out for 

the deformation parameter = 0.0 to 1 with = 0.1 

and for = -120 to  = -180. In our calculations the 

following convention is used: The deformation 

parameter  = -180 corresponds to the oblate shape 

rotating about the symmetry axis while  = -120 

corresponds to the prolate shape rotating about an axis 

perpendicular to the symmetry axis. Calculations are 

carried out by minimizing the free energy for 

equilibrium deformation. The free energy of the 
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system for each temperature and spin is minimised with respect to the deformation and shape parameter.  

 
 

Figure  1. The deformation  as a function of angular momentum for different temperature for the nuclei 98Sr 

 

Figure 1 shows the changes in deformation as a 

function of angular momentum for different 

temperature for the nuclei 98Sr. The fluctuation in the 

plot indicates a shape transition less spherical to 

deformed shape. From the Fig. 1 for the nuclei 98Sr, for 

a given temperature T = 0.5MeV, the fluctuation 

around the angular momentum 6-12ħ corresponds to 

the deformation change = 0.0 to = 0.2 and the 

fluctuation around the angular momentum 14-16ħ 

corresponds to the deformation change = 0.2 to = 0.0. 

The fluctuation around the angular momentum 18-

20ħ corresponds to the deformation change = 0.0 to = 

0.2, i.e. it is corresponds to spherical to less deformed 

shape. The variation at angular momentum 22-28ħ 

corresponds to a deformation change = 0.2 to = 0.0, 

the variation around the angular momentum 30-

34ħcorresponds to a deformation change = 0.0 to = 

0.2, i.e. it is corresponds to spherical to less deformed 

shape and the variation around the angular 

momentum 36-50ħ corresponds to a deformation 

change = 0.0 to = 0.3, it is corresponds to spherical 

to less deformed shape.For higher temperatures T≈1.0-

2 MeV, similar trends of transition were observed. If 

the temperature increases further to 2.5 and 3MeV the 

fluctuations are reduced and we observe a sudden 

transition from spherical to deformed shape at angular 

momentum 36 ħ.   
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Figure 2.The shape parameter as a function of angular momentum for different temperature for  the 

nuclei 98Sr 

 
 

Figure 2 shows changes in deformation  as a function 

of angular momentum for different temperature for 

the nuclei 98Sr. From the Fig. 2 for the nuclei 98Sr, it is 

found that the change in the deformation around the 

angular momentum 6-12ħ corresponds to a shape 

change from collective prolate to triaxial i.e., the 

deformation change from  = -180 to  = -150.  It 

shows fluctuations around the angular momentum I = 

14-16ħ, its corresponds to shape change within from 

triaxial to collective prolate shape ( = -140 to  = -

120). It also shows fluctuations around the angular 

momentum I = 18-20ħ, i.e., corresponds shape change 

to triaxial shape. The fluctuation around the angular 

momentum  22-28ħ corresponds to the shape change 

from triaxial to  collective prolate ( = -170 to  = -

180). The fluctuation around the angular momentum 

30-42ħcorresponds to the deformation change = 0.0 

to = 0.2, i.e. it is corresponds collective prolate to 

triaxial shape. The fluctuation at angular momentum 

44-50ħcorresponds to a shape change from triaxial to 

non collective oblate. It is interesting to note that 

with increasing temperature the presence of triaxial 

shape vanish, the nuclei undergoes a shape transition 

from collective prolate to oblate shape. 

 

IV. CONCLUSION 

 

A systematic study on shape phase transitions 

between spherical and deformed in the framework of 

the statistical theory as a function of temperature and 

angular momentum for 98Sr. The evolution from 

spherical to triaxially deformed and triaxially 

deformed to deformed oblate shape are very much 

significant in this work. At low temperature and 

angular momentum, triaxiality is predominant shape 
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and at higher temperature and angular momentum 

shape transition to oblate. 
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