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ABSTRACT 

 

Following Brun’s formalism for decoherent Discrete Time Quantum Walk (DTQW), a fully analytical 

formulation of first moment of DTQW has been presented when the quantum walker is subjected to a bit-flip 

noise and the initial state of the walker is considered to be delocalized up to three lattice sites in 1D. It is shown 

that when the initial state of the walker is also modulated by an initial phase, particular choice of initial phase 

angle can nullify the effect of the nonlocality in first moment in short time limit. 
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I. INTRODUCTION 

 

In the past few decades, quantum version of Classical 

Random Walk (RW), also known as Quantum Walk 

(QW)[1–8] has gained popularity due to its numerous 

applications in multidisciplinary subjects like 

quantum algorithm, quantum biology etc. It is a 

striking feature of QW that due to effect of quantum 

interference, at least in 1D, QW spreads exponentially 

faster than RW [9].Technically this signifies that in 

QW, the measure of spread rate i.e. variance is found 

out to be         as compared to RW where      ,   

is the number of steps taken by the walker . This 

exponential speed up is one of the reasons why QW 

on a line (1D) has been studied extensively [10–13]. 

Past works on QWs have largely discussed issues 

about long time dynamics of quantum walker under 

discrete or continuous time framework. Unlike its 

continuous time counterpart [CTQW][14], a discrete 

time quantum walk [DTQW][15] is said to have a 

Position Hilbert Space and an auxiliary Hilbert space, 

namely Coin Hilbert Space. A ‘quantum coin’ is 

thrown in the Coin Hilbert Space and the result of the 

‘throw’ of the coin decides the direction of the 

movement of quantum walker in the Position Hilbert 

Space. In 1D, the direction of movement of the walker 

is either ‘left’ or ‘right’ depending on the result of the 

‘coin throw’. Then the dynamics of the QW is 

governed by the joint operation of a shift operator 

which acts on the Position Hilbert Space and a coin 

operator which ’flips’ the coin state after each time 

step. The effects of decoherence on DTQW is also 

extensively studied [16–24] under application of 

special noise operations with probability p per unit 

time. In most of the previous papers on DTQW, 

authors have chosen a walker with initial state 

localized at origin    . In this work we have 

considered DTQW under a bit flip noise type model of 

decoherence and the walker is said to begin with an 

initial state delocalized over three lattice sites in 1D. 

The choice of initial states with nonlocality is 

important because some of the important attributes of 

QW dynamics like spread or decay rate depends on 

how the walker starts its walk. We have also 

considered that the nonlocal initial state is specially 

modulated by a phase factor. We have analytically 

calculated the first moment of the walker starting 

with this three-site delocalized phase modulated 

initial state. The structure of our paper in the 

subsequent sections is as follows.  In section II, we 
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have briefly reviewed all the prerequisites required for 

our work concerning DTQW with initial state 

localized at origin. In section III, following Brun’s 

formalism [25,26], analytical calculation for the first 

moment has been presented and the fate of the first 

moment has been considered for special initial phase 

factors and the results are briefly discussed in the last 

section.    

II. METHODS AND MATERIAL 

 

Let us briefly review the basic details of decoherent 

DTQW required for our work. Let us assume that for a 

DTQW on a line, the Position Hilbert Space is Hw and 

the Coined Hilbert Space is Hc.. The Position Hilbert 

Space is spanned by the position eigenstates |  >, 

where              …..etc. which are the lattice 

sites on 1D  and the Coin Hilbert Space is spanned by 

two orthogonal vectors |R> and |L>. Hence the 

combined Position Coin Hilbert space is  

             

 

Let us also choose  ̂R and  ̂L as orthogonal projectors 

on the coined Hilbert space which satisfy   ̂R +  ̂L  =  ̂ 

where   ̂ is the identity operator. As normally done in 

literature of QW, we will choose the coin flip 

operator  ̂ to be Hadamard operator  ̂  which 

satisfies following conditions.  

                 ̂        
 

 √ 
            

                 ̂  |L> = 
 

 √ 
          

 

The shift operator  ̂  takes the quantum walker to a 

step ‘right’ if the coin state is in one of the two basis 

states ( |R> or |L>) or ‘left’ if the coin state is in the 

other basis state (|L> or |R>). Then the form of shift 

operator  ̂ can be expressed as  

 ̂         ∑            

 

    ∑        

 

 

Hence, the joint operation of the shift operator   ̂ and 

coin operator    ̂on the combined Hilbert space is 

                             ̂=  ̂  ̂  ̂) 

If this operator  ̂ acts on initial state of the quantum 

walker, it can produce all subsequent states of the QW 

dynamics. If we consider the initial state of the 

quantum walk is             , where     > is 

the initial position state and      is the initial coin 

state , then after   steps the quantum walker will be in 

a state   

        ̂  |   

 

Without any loss of generality, we will consider the 

initial state of the coin is localized at    . 

 

Let us begin with a DTQW on the line where the 

walker is considered to start with initial state localized 

at origin, i.e    .We will work on Fourier space. 

Hence, the position state    of the particle can be 

written as, in Fourier space, 

                                                        

           ∫(
  

  
)                  (1) 

 

The initial localized state can be written as  

                                                  

            ∫ (
  

  
)                                      (2)   

 

The initial density matrix for position coin space is  

 

   =                                         (3) 

 

If    is the density matrix for position coin space after 

  steps, the probability distribution formula for the 

quantum walker will be  

 

               P(     =    (         )                    (4) 

 

Where   (.) is the Trace operation. In order to 

calculate the moments of the walker, we need to 

calculate the following expression. 

                 

                     > =  ∑   
  P(                        (5) 
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For      the above expression produces first 

moment or the mean value of the quantum walk 

which is of course,   

              

                ∑    P(                                   (6)  

                                                            

It is the expression (6) we will be interested to 

calculate in the next section. When the particle is at 

origin, the equation (1) reduces to  

                                                            

               ∫(
  

  
)                                       (7) 

 

Unless otherwise specified, the range of integration is 

from -π to +π and this range will be used throughout 

our work. As we are considering a decoherent 

quantum walker here, we will choose here a 

particular decoherence in the form of bit flip matrix 

and this form will be used throughout our calculations. 

 

We will choose the decoherence produced by the 

operators 

            ̂0  √  ̂  ,    ̂1 = √  ̂ 

 

Where  ̂  is Pauli    matrix,  ̂  is the identity matrix 

and the walk has a probability   per step being 

measured. Here the form of Pauli    matrix is used a 

bit flip noise operator.  

 

III. RESULTS AND DISCUSSION 

 

Let us choose our model where the initial state of the 

walker is delocalised over three lattice sites 

namely   , |+1> and |−1>. The walker begins at an 

initial state which is in equal superposition of the |0>, 

|+1>and |−1>, namely 

 

       
 

√ 
             )                (8) 

Where             ∫ (
  

  
)           

 And                 ∫ (
  

  
)        

 

Let us further generalize our initial states by 

considering the lattice sites |+1> and |−1> are 

modulated by phase factors      and     . Hence, our 

model initial state is 

              
 

√ 
(          |      |      (9) 

 

We have already assumed the initial coin state to be 

|   > and the  initial density matrix of the joint 

position -coin space is     Inserting the expression for 

nonlocal initial state (9) of our model in relation (3), 

the density matrix    , after   steps , can be expressed 

as 

         
 

 
  ∫

  

  
 ∫

   

  
                 

    
                                                               (10) 

 

Where,                        +              

                   
    (    )           

                      

Here,     
  is a super operator. A superoperator is a 

special operator which acts on one or more operators. 

The expression for the super operator here is given by  

 

        
 ∑        

         
   

 

           

 
  
        

  
  
  

 

Where    in the expression of superoperator is given 

by  

                  
 

√ 
 ( 

       

       
) 

 

It is well known that this super operator is trace 

preserving. It is also important here to note that a 

trace preserving quantum operation can be described 

by a set of Kraus operators               assumed 

to satisfy [25] 

                         ∑   
       

    

 

Now let us use our expression for density matrix (10) 

in expression (4) to calculate the probability 

distribution of the walker.   
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P      
 

 
∫

  

  
∫

   

  
                          

    

                              (11) 

 

Where by definition                          

and we have denoted the initial coin density matrix  

         by   . 

 

Now we are in a position to calculate the moments of 

the of the quantum walker.  

Inserting the expression (11) in equation (5), 

 

    

  
 

 
 ∑∫

  

  
∫

   

  
                            

    

 

 

                                                                           (12) 

At this stage let us use following property of 

derivative of Dirac delta function       Namely,  

                    ∑             
    (13) 

 

Inserting      in equations (12) and (13), we get the 

expression for first moment from equation (13) which 

is as follows, 

     
 

 
 ∑∫

  

  
∫              

 

            
     

                   (14) 

We will not use this particular form of the first 

moment here. In order to get a more usable form of 

the first moment, let us integrate the above 

relation(14).To deduce a more usable form of first 

moment, let us consider a function         chosen 

from above expression (14) 

 

                                        
     

 

If we now integrate the function on the right of     in 

the equation (14) using function        by 

integration by parts method we will require following 

mathematical relations.  

Namely, 

 

(1)Super operator   is Trace preserving, i.e   

                    (    
   )          

 

(2)Trace of density matrix (operator ) is 1 

 

Using above two relations in the integration by parts, 

our expression for the first moment for the walker 

with nonlocal initial state (9) and initial phase   can  

be simplified as , 

           
 

 
∫

  

  
           

           ∑       
 

   

 

   

 

                                                                      (15) 

Where   is defined in [25]. 

This new analytical expression is our main result. In 

this expression,      is the expression for first 

moment of the walker for localized initial state     

[25], 

                    ∫
  

  
∑        

 
   

 
   (16) 

    

It is important to observe in our expression (15) that 

non local contributions for the first moment arise due 

to inclusion of |1> and |-1> sites in our initial state and 

the effect of this non locality is encapsulated in the 

trigonometric factors arising in addition to the local 

contribution     . These trigonometric functions 

are the reminders of       type pattern of waveform 

arising due to interference in classical physics. Next, 

we proceed further to calculate our expression (15) for 

special values of initial phase factors. We have used  

MATHEMATICA software for short time limit t = 20.  

 

The super operator   and the submatrix for the super 

operator for the chosen bit flip noise operator are used 

in[27].We have mainly followed Brun’s formalism [25] 

to calculate the Trace part of (15) and (16). The 

superoperator      is linear and we can represent it as 

a matrix acting on space of two-by two operators. A 

general two-by-two matrix (or operator) can be 

written as 

 ̂      ̂                 
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where        are Pauli matrices . We then represent 

 ̂ by a column vector with components          and   . 

To calculate trace part of first moment, in the spirit of 

equation II.39 of the article [25], the   component of 

our result is found. Then    component is multiplied 

by cosine factors and then integrations are carried out 

in equation (15).        

 

We have chosen three special values for initial phase 

  to calculate (15). Let us consider three special cases 

of initial states which give us interesting consequences. 

 

Case I:     = (2n + 1) π/4  

We have observed that for    = (2n + 1) π/4, where n = 

0,1,2,3...the nonlocal contribution to the first moment 

in (15) becomes zero. Hence for    = (2n + 1) π/4,the 

first moment for nonlocal initial state (9) becomes 

equal to first moment for the local initial state (7) and 

we conclude that at this particular choice of phase 

angles, phase in the initial state can nullify the effect 

of nonlocality in first moment and equation (15) 

reduces to equation (16). 

 

Case II:     = 0 

In this case, we have observed that for    = 0 the non 

local first moment (15) is given by          

      where      is some function of the noise level   

and the value of      

dependent on the time steps.  

 

Case III:      = π  

In this case, we have observed that for    =   the non 

local first moment (15) is given by          

      where       is again some function of the noise 

level    and like Case II, the value of       is again 

dependent on time steps. 

 

IV. CONCLUSION  

 

We have observed that for each time step and for a 

particular value of noise level  , the value of      in 

Case II and Case III are exactly same. Here, we would 

like to comment that the exact form of this function is 

not important. The important fact here is to observe 

that for    = 0 and   = π phase angles, both the lattice 

sites |+1> and |−1> in our initial state (9) appear with 

‘+’ and ‘-’ signs respectively. This choice, for symmetry 

reason, produces ‘+’ and ‘-‘ signs in case II and case III. 

This also proves that choice of initial phase doesn’t 

only nullify the effect of nonlocality in the first 

moment of the quantum walker, it can also decrease 

or increase the value of it with respect to local initial 

state. It will be interesting to observe the fate of the 

probability distributions under these particular initial 

phase values. A similar interesting change in survival 

probability of a DTQW was observed with nonlocal 

initial state and with change in relative phase of the 

lattice sites [28] although no noise was considered in 

that particular work. We believe that our result will 

remain independent under the choice of form of noise 

operators.  Although our result is fairly general, but 

one can still generalize it by including more lattice 

sites by hand. And also, following similar mechanism 

one can go further to calculate second moment and 

finally the variance of the walker to gain additional 

insights of the short and long time dynamics and the 

spread rate. 
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