
IJSRST1841300 | Received : 02 July 2017 | Accepted : 24 July 2017 | July-August-2017 [(3) 6: 695-703]

© 2017 IJSRST | Volume 3 | Issue 6 | Print ISSN: 2395-6011 | Online ISSN: 2395-602X

Themed Section: Science and Technology

 695

The role of Hadoop Distributed Files System(HDFS) in Technological era
Navjot Jyoti

Assistant Professor, Northwest Group of Institutions, Dhudike (Moga), Punjab, India

ABSTRACT

The popularity of cloud computing has been growing steadily for several years. It has been used more and more

widely in many works of life. Cloud computing provides massive clusters for efficient large scale computation

and data analysis. The MapReduce structure and its open source execution Hadoop have set up themselves as

one of the most poplular large informational collections analyzers. They are generally utilized by numerous

cloud specialist organizations, for example, Amazon EC2 Cloud.

Keywords : MapReduce, HDFS, GFS

I. INTRODUCTION

Hadoop is an open source framework, facilitated

by the Apache Software Foundation that gives a

solid, fault tolerant, distributed document system

and application programming interfaces. These

empower its map-reduce framework to analyze

substantial volumes of information in parallel.

Straightforwardness of the Hadoop programming

model takes into consideration clear usage of

numerous applications. Java applications have the

most direct access, yet Hadoop likewise has

spilling capacities that take into account usage in

any language.

Several organizations that need to handle large

amounts of data are using map-reduce

implementations to manage that data. Google

started using a map-reduce system internally

before 2004 [Dean 2004][1]. Yahoo runs the

largest Hadoop cluster, running over a Linux

cluster of over 10,000 cores [Yahoo 2008].

Vendors, such as Amazon, utilize Hadoop as part

of their cloud computing service.

II. Hadoop Distributed File System

The Hadoop Distributed Files System (HDFS)

keeps running over a local document framework

and is just open through the Hadoop Application

Programming Interfaces (APIs). HDFS

arrangements appropriate information in

similarly estimated pieces over the accessible

information hubs. This division of information

works best for huge records that can be put away

as products of the lumping size designed for the

HDFS.

In the event that the documents are littler than

the lumping size, the HDFS will squander nearby

record framework assets with exhaust, dispensed

bytes. Excess and adaptation to internal failure

are accomplished by recreating these pieces on

different hubs. Hadoop endeavors to run the

guide activities on duplicates of the information

neighborhood the mapping undertaking. This

decreases the measure of information that should

be moved around. A HDFS may comprise of

hundreds or thousands of server machines, each

consisted of storing piece of the file information.

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

696

Along these lines, recognition of flaws and speedy,

programmed recuperation from them is a center

design objective of HDFS. Applications that keep

running on HDFS require streaming access to

their data collections. They are not universally

useful applications that regularly keep running on

broadly useful document frameworks. HDFS is

composed more for cluster preparing as opposed

to intelligent use by clients [2].

III. Map-Reduce API

Hadoop uncovered three activities for executing

the map reduce algorithm, mapping, joining, and

decreasing. The framework is executed in Java; in

any case, Hadoop additionally uncovered a

gushing interface that permits programs written

in any language to process every activity.

The need for real-time execution of MapReduce

applications is increasingly arising and the

effective processing strategy for deadline jobs has

drawn attention of lots of researchers[3].

The process of MapReduce includes two major

parts, Map function and Reduce function. The

input files will be automatically split and copied

to different computing nodes. After that the

inputs will be sent to Map function in key-value

pair format. The Map function will process the

input pairs and also generate intermediate key-

value pairs as inputs for Reduce function. The

Reduce function will combine the inputs who

have the same key and generate the final result.

The final result will be written into the

distributed file system[4]. The users only need to

implement Map and Reduce functions. They do

not need to concern about how to partition the

input which is automatically done by the model.

The model will make tasks assigned evenly to

every machine. Sometimes, to reduce

communication overhead, a optional part

Combine function can be employed. The

Combine function can be regarded as a local

Reduce, combines the results from Map function

together locally, and returns a single value for

Reduce function.

IV. HDFS Architecture

HDFS has a master/slave architecture. HDFS has

an ace/slave engineering.[5]A HDFS cluster

comprises of a solitary NameNode, a master

server that deals with the file system namespace

and manages access to files by users. Also there

are various DataNodes, typically one for every

cluster in the group, which manage capacity

appended to the hubs that they keep running on.

HDFS uncovered a document framework

namespace and enables client information to be

put away in files. Inside, a file is part into at least

one squares and these pieces are put away in an

arrangement of DataNodes. The NameNode

executes file framework namespace operations

like opening, closing, and renaming files and

directories. It additionally decides the mapping of

pieces to DataNodes. The DataNodes are in

charge of serving read and write requests from

the file system’s clients.The DataNodes

additionally perform square creation, deletion,

and replication upon direction from the

NameNode.

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

697

Fig 1 : HDFS Architecture

The NameNode and DataNode are bits of

programming intended to keep running on item

machines. These machines commonly run a

GNU/Linux working framework (OS). HDFS is

assembled utilizing the Java language; any

machine that backings Java can run the

NameNode or the DataNode programming. Use of

the exceptionally versatile Java language implies

that HDFS can be sent on an extensive variety of

machines. A normal sending has a committed

machine that runs just the NameNode

programming. Each of alternate machines in the

bunch runs one case of the DataNode

programming. The architecture does not block

running different DataNodes on a similar

machine however in a genuine arrangement that

is once in a while the case.

The presence of a single NameNode in a group

incredibly streamlines the design of the

framework. The NameNode is the judge and

repository for all HDFS metadata. The framework

is planned such that client information never

flows through the NameNode.

Functions of NameNode:

 It is the master daemon that maintains and

manages the DataNodes (slave nodes)

 It records the metadata of all the files stored

in the cluster, e.g. The location of blocks

stored,the size of the files, permissions,

hierarchy, etc. There are two files associated

with the metadata:

o FsImage: It contains the complete state of the

file system namespace since the start of the

NameNode.

o EditLogs: It contains all the recent

modifications made to the file system with

respect to the most recent FsImage.

 It records each change that takes place to the

file system metadata. For example, if a file is

deleted in HDFS, the NameNode will

immediately record this in the EditLog.

 It regularly receives a Heartbeat and a block

report from all the DataNodes in the cluster to

ensure that the DataNodes are live.

 It keeps a record of all the blocks in HDFS and

in which nodes these blocks are located.

 The NameNode is also responsible to take care

of the replication factor of all the blocks

which we will discuss in detail later in this

HDFS tutorial blog.

 In case of the DataNode failure, the

NameNode chooses new DataNodes for new

replicas,balance disk usage and manages the

communication traffic to the DataNodes.

Functions of DataNode:

 These are slave daemons or process which

runs on each slave machine.

 The actual data is stored on DataNodes.

 The DataNodes perform the low-level read

and write requests from the file system’s

clients.

 They send heartbeats to the NameNode

periodically to report the overall health of

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

698

HDFS, by default, this frequency is set to 3

seconds.

The File System Namespace

HDFS supports a customary hierarchical file

association. A user or an application can create

directories and store files inside these directories.

The file framework namespace chain of command

is like most other existing document frameworks;

one can make and evacuate documents, move a

document starting with one directory then onto

the next, or rename a file. HDFS does not yet

actualize client standards. HDFS does not support

hard connections or delicate connections. In any

case, the HDFS architecture does not block

executing these highlights.

The NameNode keeps up the record framework

namespace[6]. Any change to the file framework

namespace or its properties is recorded by the

NameNode. An application can indicate the quantity

of reproductions of a document that ought to be kept

up by HDFS. The quantity of duplicates of a record is

known as the replication factor of that document. This

data is put away by the NameNode.

Data Replication

HDFS is intended to dependably store substantial

records crosswise over machines in an expansive

bunch. It stores each record as a grouping of blocks;

all blocks in a file aside from the last block are a

similar size. The pieces of a file are replicated for

adaptation to internal failure. The block size and

replication factor are configurable per document. An

application can determine the quantity of copies of a

document. The replication factor can be indicated at

files creation time and can be changed later. Files in

HDFS are write once and have entirely one writer at a

time.

The NameNode settles on all choices with respect to

replication of pieces. It intermittently gets a Heartbeat

and a Blockreport from each of the DataNodes in the

bunch. Receipt of a Heartbeat infers that the

DataNode is working properly. A Blockreport contains

a list of all blocks on a DataNode.

Fig 2 : Data replication

Balancer

HDFS block placement strategy does not consider

DataNode plate space usage. This is to abstain from

putting new information at a little subset of the

DataNodes with a great deal of free storage. Along

these lines data may not generally be put consistently

crosswise over DataNodes. Imbalance likewise

happens when new hubs are added to the clusters.

The balancer is a tool that adjusts hard disk space

usage on a HDFS cluster[7]. The threshold value is

taken between 0 and 1. A cluster is changed if, for

each DataNode, the use of the node varies from the

use of the entire cluster by near to the limit value.

The tool is conveyed as an application program that

can be controlled by the cluster administration. It

iteratively moves reproductions from DataNodes with

higher usage to DataNodes with bring down use. One

key necessity for the balancer is to keep up

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

699

information accessibility. While picking a

reproduction to move and choosing its goal, the

balancer ensures that the choice does not decrease

either the quantity of replicas or the number of racks.

The balancer optimizes the balancing process by

minimizing the inter-rack data copying. If the

balancer decides that a replica A needs to be moved to

a different rack and the destination rack happens to

have a replica B of the same block, the data will be

copied from replica B instead of replica A. A

configuration parameter limits the bandwidth

consumed by rebalancing operations. The higher the

allowed bandwidth, the faster a cluster can reach the

balanced state, but with greater competition with

application processes.

The Communication Protocols

All HDFS communication protocols are layered on top

of the TCP/IP protocol. A client establishes a

connection to a configurable TCP port on the

Namenode machine. It talks the ClientProtocol with

the Namenode. The Datanodes talk to the Namenode

using the DatanodeProtocol. A Remote Procedure Call

(RPC) abstraction wraps both the ClientProtocol and

the DatanodeProtocol. By design, the Namenode

never initiates any RPCs. Instead, it only responds to

RPC requests issued by Datanodes or clients.

Robustness

The primary objective of HDFS is to store data reliably

even in the presence of failures. The three common

types of failures are Namenode failures, Datanode

failures and network partitions.

Data Disk Failure, Heartbeats and Re-Replication

Each Datanode sends a Heartbeat message to the

Namenode periodically. A network partition can cause

a subset of Datanodes to lose connectivity with the

Namenode. The Namenode detects this condition by

the absence of a Heartbeat message. The Namenode

marks Datanodes without recent Heartbeats as dead

and does not forward any new IO requests to them.

Any data that was registered to a dead Datanode is not

available to HDFS any more. Datanode death may

cause the replication factor of some blocks to fall

below their specified value. The Namenode constantly

tracks which blocks need to be replicated and initiates

replication whenever necessary. The necessity for re-

replication may arise due to many reasons: a Datanode

may become unavailable, a replica may become

corrupted, a hard disk on a Datanode may fail, or the

replication factor of a file may be increased.

Cluster Rebalancing

The HDFS architecture is compatible with data

rebalancing schemes. A scheme might automatically

move data from one Datanode to another if the free

space on a Datanode falls below a certain threshold. In

the event of a sudden high demand for a particular file,

a scheme might dynamically create additional replicas

and rebalance other data in the cluster. These types of

data rebalancing schemes are not yet implemented.

Data Integrity

It is possible that a block of data fetched from a

Datanode arrives corrupted. This corruption can occur

because of faults in a storage device, network faults, or

buggy software. The HDFS client software

implements checksum checking on the contents of

HDFS files. When a client creates an HDFS file, it

computes a checksum of each block of the file and

stores these checksums in a separate hidden file in the

same HDFS namespace. When a client retrieves file

contents it verifies that the data it received from each

Datanode matches the checksum stored in the

associated checksum file. If not, then the client can

opt to retrieve that block from another Datanode that

has a replica of that block.

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

700

Metadata Disk Failure

The FsImage and the EditLog are central data

structures of HDFS. A corruption of these files can

cause the HDFS instance to be non-functional. For

this reason, the Namenode can be configured to

support maintaining multiple copies of the FsImage

and EditLog. Any update to either the FsImage or

EditLog causes each of the FsImages and EditLogs to

get updated synchronously. This synchronous

updating of multiple copies of the FsImage and

EditLog may degrade the rate of namespace

transactions per second that a Namenode can support.

However, this degradation is acceptable because even

though HDFS applications are very data intensive in

nature, they are not metadata intensive. When a

Namenode restarts, it selects the latest consistent

FsImage and EditLog to use. The Namenode machine

is a single point of failure for an HDFS cluster. If the

Namenode machine fails, manual intervention is

necessary. Currently, automatic restart and failover of

the Namenode software to another machine is not

supported.

COMPARATIVE ANALYSIS OF HDFS AND GFS

A GFS cluster consists of a single master and Multiple

servers and is accessed by multiple clients[8] and

HDFS has a master/slave architecture. HDFS cluster

comprises of a solitary NameNode, a master server

that deals with the file system namespace and

manages access to files by users.

Properties GFS HDFS

Design Goals  Goal is

to support

large files

 Built

based on the

assumption

that terabyte

 One of

the main goals

of HDFS is to

support large

files.

 Built

based on the

data sets will

be distributed

across

thousands of

disks attached

to commodity

computer

nodes.

 Used

for data

intensive

computing.

 Store

data reliably,

even when

failures occur

within chunk

servers,

master, or

network

partitions.

 GFS is

designed more

for batch

processing

rather than

interactive use

by users.

assumption that

terabyte data

sets will be

distributed

across thousands

of disks attached

to commodity

compute nodes.

 Used

for data

intensive

computing.

 Store

data reliably,

even when

failures occur

within name

nodes, data

nodes, or

network

partitions.

 HDFS is

designed more

for batch

processing

rather than

interactive use

by users.

Processes Master and

chunk server

Name node and

Data node

File

Management

 Files

are organized

hierarchically

in directories

and identified

by path names.

 GFS is

exclusively for

Google only.

 HDFS

supports a

traditional

hierarchical file

organization

 HDFS

also supports

third-party file

systems such as

CloudStore and

Amazon Simple

Storage Service.

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

701

Scalability  Cluster

based

architecture

 The

file system

consists of

hundreds or

even

thousands of

storage

machines built

from

inexpensive

commodity

parts.

 The

largest cluster

have over 1000

storage nodes,

over 300 TB of

disk storage,

and are

heavily

accessed by

hundreds of

clients on

distinct

machines on a

continuous

basis.

 Cluster

based

architecture

 Hadoop

currently runs

on clusters with

thousands of

nodes.

Protection  Google

have their own

file system

called GFS.

With GFS,

files are split

up and

 stored in

multiple

 pieces on

multiple

machines.

 The

HDFS

implements a

permission

model for files

and directories

that shares

much of the

POSIX model.

 File or

directory has

separate

 Filenames

are random.

There are

hundreds of

thousands of

files on a

single disk,

and all the

data is

obfuscated so

that

 it is not

human

readable. The

algorithms

uses for

obfuscation

changes all the

time.

permissions for

the user that is

the owner, for

other users that

are members of

the group, and

for all other

users

Security  Google

has dozens of

datacenters for

redundancy.

These

datacenters are

in

undisclosed

locations and

most are

unmarked for

protection.

 Access

is allowed to

authorized

employees and

vendors only.

Some of the

protections in

place include:

24/7

guard

coverage,

 HDFS

security is based

on the POSIX

model of users

and groups.

 Currentl

y is security is

limited to

simple

 file

permissions.

The identity of a

client process is

just whatever

the host

operating

system says it is.

Network

authentication

protocols like

Kerberos for

user

authentication

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

702

Electronic key

access, Access

logs, Closed

circuit

televisions,

Alarms linked

to guard

stations,

Internal and

external

patrols, Dual

utility power

feeds and

Backup power

UPS and

generators.

and

encryption of

data transfers

are yet not

supported.

Database Files Bigtable is the

database used

by GFS.

Bigtable is a

proprietary

distributed

database of

Google Inc.

HBase[15]

provides

Bigtable

(Google)

[16]-like

capabilities on

top of Hadoop

Core.

File Serving A file in GFS is

comprised of

fixed sized

chunks. The

size of chunk

is 64MB.

Parts of a file

can be stored

on different

nodes in a

cluster

satisfying the

concepts

load balancing

and storage

management.

HDFS is divided

into large blocks

for

storage and

access, typically

64MB in

size. Portions of

the file can be

stored on

different cluster

nodes, balancing

storage

resources and

demand

Cache

Management

 Clients

do cache

 HDFS

uses distributed

metadata.

Neither the

sever nor the

client caches

the file data.

 Chunk

s are stored as

local files in a

Linux system.

So, Linux

buffer cache

already keeps

frequently

accessed data

in memory.

Therefore

chunk servers

need not cache

file data.

cache It is a

facility provided

by Mapreduce

framework to

cache

application-

specific, large,

read-only files

(text, archives,

jars and so on)

 Private

(belonging to

one user) and

Public

(belonging to all

the user of the

same node)

Distributed

Cache Files.

Cache

Consistency

 Appen

d-once-read-

many model is

adapted by

Google. It

avoids the

locking

mechanism of

files for

writing in

distributed

environment is

avoided.

 Client

can append the

data to the

existing file.

 HDFS’s

write-once-

read-many

model that

relaxes

concurrency

control

requirements,

simplifies data

coherency, and

enables high

throughput

access.

 Client

can only append

to existing files

Communicati

on

TCP

connections

are used for

communicatio

n. Pipelining is

used for data

RPC based

protocol on top

of TCP/IP

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

703

transfer over

TCP

connections

Replication

Strategy

 Chunk

replicas are

spread across

the racks.

Master

automatically

replicates the

chunks.

 A user

can specify the

number of

replicas to be

maintained.

 The

master re-

replicates a

chunk replica

as soon as the

number of

available

replicas falls

below a user-

specified

 number.

 Automat

ic replication

system. Rack

based system.

By default two

copies of each

block are stored

by different

Data Nodes in

the same rack

and a third copy

is stored on a

Data Node

in a different

rack (for greater

reliability).

 An

application can

specify the

number of

replicas of a file

that should be

maintained by

HDFS.

Replication

pipelining in

case of write

operations.

Available

Implementati

on

GFS is a

proprietary

distributed file

system

developed by

Google for its

own

use.

Yahoo,

Facebook, IBM

etc. are based on

HDFS.

V. CONCLUSION

Hadoop Distributed File System and Mapreduce

are the components of Hadoop project owned by

Apache. Google File System is a proprietary

distributed file system and is exclusive for Google

Inc. Mapreduce is the programming frame work

used by Google.

VI. REFERENCES

[1]. Ke-Tha Yao,Robert F. Lucas et al. "Data anlysis

for Massively distributed Simulations,"

Interservice/Industry Training, Simulation, and

Education Conference (I/ITSEC) 2009

[2]. Vidyasagar S. D"A Study on Role of Hadoop in

Information Technology era" Volume : 2 | Issue :

2 | Feb 2013 • ISSN No 2277 - 8160

[3]. Jiazhen Han, Zhengheng Yuan et al. "An

Adaptive Scheduling Algorithm for

Heterogeneous Hadoop Systems" 2017 IEEE

ICIS 2017, May 24-26, 2017, Wuhan, China

[4]. Junbo Zhang, Dong Xiang, Tianrui Li, and Yi

Pan "M2M: A Simple Matlab-to-MapReduce

Translator for Cloud Computing" TSINGHUA

SCIENCE AND TECHNOLOGY ISSNl1007-

0214 01/12 pp 1-9 Volume 18, Number 1,

February 2013

[5]. https://hadoop.apache.org/docs/r1.2.1/hdfs_desig

n.html

[6]. https://www.edureka.co/blog/apache-hadoop-

hdfs-architecture/

[7]. http://www.aosabook.org/en/hdfs.html

[8]. R.Vijayakumari, R.Kirankumar, K.Gangadhara

Rao "Comparative analysis of Google File System

and Hadoop Distributed File System"

International Journal of Advanced Trends in

Computer Science and Engineering, Vol. 3 ,

No.1, Pages :553-558 (2014)

