
IJSRST184517 | Received : 01 March 2018 | Accepted : 10 March 2018 | March-April-2018 [(4) 5 : 111-117]

© 2018 IJSRST | Volume 4 | Issue 5 | Print ISSN: 2395-6011 | Online ISSN: 2395-602X
Themed Section: Science and Technology

 111

A Meta-Stacked Software Bug Prognosticator Classifier
Ajay Kumar Shrivastava*1, Dr. Ekbal Rashid2

*1M.Tech Research Scholar, Jharkhand Rai University, Ranchi, Jharkhand, India
2Department of CSE, Aurora’s Technological and Research Institute, Uppal, Hyderabad, Telangana, India

ABSTRACT

Predicting defects defines the proactive process of classifying the defects that can be found in entire software’s

content, within and cross-project codes for producing high quality product with optimized cost. Error

prediction in open source software is more crucial due to its inherent complexity and the large repository of

contributors. In this paper we present the meta-stacked regression model (MSRM) which improvises the

Rayleigh Probabilistic distribution for feature selection estimates. Firstly, a heuristic bug mining approach is

adopted to mine the parameters reported by developers and contributors of various Open source projects

(Bugzilla, Eclipse, Mozilla) activity logs. In the second part, Stacked Regression is compared to Neural Networks

and Linear Support Vector Machine models in terms of the bug prediction performance with Feature

importance and Correlation amongst parameters. The results show that the ensemble based Stacked regression

has better precision and F-measure compared to simple machine learning models. The MSRM model accurately

predicts and classifies bugs with accuracy of 96.8% and reduces the impact of false positives by recall of 71.2%.

Keywords: Stacked Regression, Bug Prediction, Cost Estimation, Rayleigh defect density, Software Project Bugs

I. INTRODUCTION

The occurrence of bugs is a deterrent in any software

project cost estimation and directly affects the quality

and success of any software management. It can affect

macroscopic elements like resource allocation, project

planning and bidding, as well as micro-level phase

wise design and execution hence bug estimation at an

early stage of software testing has led to extensive

research efforts. Bugs can reduce the reliability of a

software system affecting its estimation and model

accuracy. Boehm’s constructive cost model COCOMO

and COCOMO II [3], Albrecht’s function point

method [2] and Putnam’s software life cycle

management (SLIM) [15] are the initial algorithmic

estimation methods which were used for software

estimation by Constructive Cost Model is by far the

most commonly used because of its simplicity for

estimating the effort in person-month for a project at

different stages.

The most fundamental calculation in the COCOMO

model is the use of the Effort Equation to estimate the

number of Person-Months required developing a

project. The other results including the estimates for

Requirements and Maintenance are derived from LOC

and effort equation. However, the model estimates the

cost and schedule of the project, starting from the

design phase and till the end of integration phase. For

the remaining phases a separate estimation model

should be used. Also, since the cost estimation may

vary due to changes in the requirements, staff size,

and environment in which the software is being

developed. This paper hence focuses on feature

selection of reported bug attributes by proposing an

Integrated Meta-Stacked Regression Model (MSRM)

improvising cost of Bug estimation and prediction

accuracy.

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

Ajay Kumar Shrivastava et al. Int J S Res Sci. Tech. 2018 Mar-Apr;4(5) : 111-117

112

The remainder of this paper is organized as follows:

Sect. II discusses about the related literature review

and its shortcomings. Section III discusses about the

methods involved in implementing the various meta-

classifiers.

Section IV discusses the proposed MSRM process flow

on various classifiers. Section V discusses the results

and paves way for further research.

II. RELATED WORK

Barry Boehm et.al [3](2000) addressed on an overview

of a variety of software estimation models indicating

that neural-net and dynamics-based techniques are

less mature than the other classes of techniques and

are challenged by the rapid changes in software

technology. The key to arriving at sound estimates is

to have a grasp of the factors which are driving the

costs of the project at hand to support the project

planning and control functions performed by the

management.

S.Wang et.al [2](2016) proposed to bridge the gap

between programs’ semantics and defect prediction

features by representation-learning algorithm. Deep

Belief Network (DBN) was adopted to learn semantic

features from token vectors extracted from programs’

Abstract Syntax Trees (ASTs) and evaluated on ten

open source projects. Results showed improvement in

WPDP 14.7% in precision, 11.5% in recall, and 14.2%

in F1. For CPDP, the semantic features based

approach outperforms the state-of-the-art technique

TCA+ with traditional features by 8.9% in F1 score.

The first contribution of our work is to find the set of

priority attributes that affect the cost of bug

estimation the most. Second is to evaluate the stacked

classifiers (Regression, Neural Network, Linear SVM)

with density distribution in terms of prediction

accuracy and F1 score.

III. METHODOLOGY

Feature selection aims to find a Q-dimensional subset

of features, Set Q, (QF) that optimizes classifier

performance and optionally minimizes the feature set

size. The primary reasons to use feature selection are

that it enables the machine learning algorithm to train

faster, improves the accuracy of a model with the

right subset and it substantially reduces over fitting.

With a carefully chosen set A ⊂ R, we can classify a

new data point x ∈ R d by checking whether f(x) ∈ A.

3.1 Logistic Regression Model

The regression model considered for classification of

bug occurrence can be written in the form

For n independent pairs (xi, yi), i=1,2,.. n where

x’i =(x0i,x1i........, xni). For the outcome Yi, the logistic

regression model assumes that

P(Yi=1 for xi) = µ(xi) ...(i)

 where µ(xi)=eg(xi)/ (1 + eg(xi)) with g(xi)=x’iß............(ii)

The maximum likelihood is obtained for parameter

estimates and the fitted values are specified as

µ’(xi) = µ(xi, ß) i.e. logit[µ (x)]= x’ ß......................(iii)

3.2 Linear Support Vector Model

Linear Classifiers define the margin as the width that

the boundary could be increased by before hitting a

datapoint. Support Vectors are those data points that

the margin pushes up against linear classifier with the

maximum margin. This is called LSVM.

Figure 1. Linear Support Vectors as function of weight

and bias

The linear objective is expressed as

ℱ (xi,xj)=xiTxj …......……………………………….(iv)

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

Ajay Kumar Shrivastava et al. Int J S Res Sci. Tech. 2018 Mar-Apr;4(5) : 111-117

113

The corresponding goal of weights and bias is given as

w =Σαiyixi ; b= yk- wTxk……………………...(v)

for any xk such that αk  0 .Here, each non-zero αi

indicates that corresponding xi is a support vector and

classifying function will have the form

ℱ (x) = ΣαiyixiTx + b...(vi)

3.3 Radial Basis Function Neural network Model

The objective of Neural system is to find a progression

of weights that will give important values in the yield

when determined particular cases of its information.

Each node in hidden layer gain input from the input

layer, which are multiplexed with proper weights and

reduced.

Figure 2. The mathematical analogy of ANN with

synaptic structure of Neural Systems with output f(x)

3.4 Rayleigh’s Density Distribution

The Rayleigh distribution[6] is a special case of the

Weibull distribution, which provides a population

model useful in several areas of statistics, including

life testing and reliability study. Rayleigh distribution

RD (Ø) is employed in parameter estimation using

different types of censoring and non-censoring data

and written as :-

Probability Distribution Function (PDF)

= 2 * Øx*e-Øx2 where x>0 and Ø>0.............(vii)

Also Cumulative Distribution Function (CDF)

= 1-e-Øx2 ..(viii)

IV. PROPOSED FRAMEWORK

In this paper the following steps were taken in the

process of model building of MSRM :-

1) Data Extraction

The bug reports of different products of Eclipse,

Mozilla and Bugzilla [5]open source software were

retrieved from the CVS repository and saved in .csv

format from source : http://bugzilla.mozilla.org

2) Data Pre-Processing & Preparation

Remove missing and Noisy data by setting all non zero

value to 1 for depends on and duplicate count

attributes. Divide the Dataset into Training data for

Model creation and testing data for validation (60:40).

Figure 3. A Sample Bug report for Open Office Project

with BugID 1425569

3) Modeling

Build three models based on LSVM, RBNN classifiers

and Regression model.

Calculate the summary weight of bug attributes by

using information gain criteria. Train the Model by

using most relevant twelve attributes to predict and

the bug severity.

Apply Rayleigh probability density to predict defect

density for different phases of project life cycle.

4) Testing and Validation

 Test the model for remaining dataset. Evaluate and

access the performance of prediction models.

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

Ajay Kumar Shrivastava et al. Int J S Res Sci. Tech. 2018 Mar-Apr;4(5) : 111-117

114

Figure 4. Overview of our proposed MSRM for defect prediction

Several experiments were conducted by recording the

bug repository to study the performance of the

proposed stacked model in comparison with existing

classifiers. The experiments were run on a 2.5GHz i5-

3210M machine with 4GB RAM.

To measure defect prediction results, we use four

Evaluation metrics: Correlation, Precision, Recall, and

F1score[3].

Pearson’s Correlation: It is used as a measure for

quantifying linear dependence between two

continuous variables X and Y. Its value varies from -1

to +1. Pearson’s correlation is given as:

 

YX

YX

YX




,cov
, 

..........................(ix)

F-measure: Weighted (by class size) average F-

measure was obtained from the classification using

feature subset with the same three classifiers as above.

It describes the Harmonic mean of Precision and

Recall.

The general formula for positive real β is given by;

 
recallecision

recallecision
F






)Pr(

Pr
1

2

2




.............(x)

FPTP

TP
precision


 ..(xi)

FNTP

TP
recall




..(xii)

Here Precision is the ratio of all relevant correctly

classified bugs to all retrieved bugs.

Recall is measured as the fraction of relevant items

retrieved out of all relevant items including False data

not correctly classified.

V. RESULTS AND DISCUSSION

The features are filtered according to the importance

derived from the feature importance graph of LVSM.

The positive and negative values in the graph show

the role of feature in classifying positive and negative

values. Therefore we select the extremities of the

features for both the classes in case of Linear SVM.

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

Ajay Kumar Shrivastava et al. Int J S Res Sci. Tech. 2018 Mar-Apr;4(5) : 111-117

115

Figure 5. Bug Attributes Selected by Feature

Importance Graph

Figure 6. Correlation Graph for Most relevant Feature

Selection

Table 1. Bug Attribute Description

Attribute

Short Description

* Severity It is the Response Categorical

Variable This Indicates how severe

the problem is.

Bug Id The unique numeric id of a bug

Priority This field describes the importance

and order in which a bug should be

fixed compared to other bugs. P1 is

considered the higher and P5 is the

lowest.

Resolution The resolution field indicates what

happened to this bugs

Status The status field indicates the

current state of bug

(New,Resolved,Progress)

Number of

Comments

Bugs have comment added to them

by user . #comments made to a bug

report

Create Date When the bug was field.

Dependency If this bug cannot be fixed unless

other bugs are fixed (depend on), or

this bug stops other bugs being

fixed (blocks) their number are

recorded here.

Summery A one-sentence summery of the

problem.

Date of

close

When the bug was closed.

Keywords The administrator can define

keywords which you can use to tag

and categorize bugs e.g. the Mozilla

project has keyword like crash and

regression.

Version The field define the version of the

software the bug was found in.

CC List A list of people who get mail when

the bug changes. #people in CC list

Platform

and OS

These indicate the computing

environment where the bug was

found.

Number of

Attachment

Number of Attachment for a bug.

Bug Fix

Time

Last resolved time-Opened time.

Time to fix a bug.

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

Ajay Kumar Shrivastava et al. Int J S Res Sci. Tech. 2018 Mar-Apr;4(5) : 111-117

116

Next, Stacking was performed by applying Rayleigh

defect density on generating the mean probabilities of

the classifiers hence further performance tuning led to

the improved accuracy of the testing dataset as

compared to the individual classifiers. Figures 7-9

depict the results of proposed MSRM model applied

on 204545 bugs to depict the F1 Score.

Figure 7. Bug Reports on Severity Parameter for

Eclipse

Figure 8. Severity Classification for Mozilla Product

Figure 8. No. Of bugs Correctly classified for Bugzilla

with Severity Prediction.

The final evaluation metric is to compute the error in

prediction by the stacked regression Model(MSRM) as

compared to the NN, LSVM and Linear regression

Model.

Root mean squared error (RMSE): RMSE is a quadratic

scoring rule that also measures the average magnitude

of the error. It’s the square root of the average of

squared differences between prediction and actual

observation.

...................................(xiii)

The RMSE values as calculated on the bug dataset

classification and prediction was

Table 2. Comparative Error Estimates

Model RMSE Value

Neural Network 0.0184908700285

Linear SVM 0.0136835156595

Linear Regression 0.0115793611054

MetaStacked Regression 0.00989779285401

Figure 8. Comparative Predictive error of MSRM

Model.

VI. CONCLUSION

It has been clearly demonstrated that Meta stacked

regression analysis can be successfully applied to

formulate a prediction model for bug classification

and hence effort estimation. It is feasible to

incorporate and implement defect prediction as part of

software development process, particularly test

process. The data collected has been tested on open

source Projects with datasets (Mozilla, Eclipse,Bugzilla)

and have scope for extension to other software

development projects with their respective metrics.

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

Ajay Kumar Shrivastava et al. Int J S Res Sci. Tech. 2018 Mar-Apr;4(5) : 111-117

117

Future enhancements include adopting the MSRM

model for web-based and component-based software

data sets.

VII. REFERENCES

[1]. X. Huo, M. Li, and Z.-H. Zhou, "Learning

unified features from natural and programming

languages for locating buggy source code," in

Proceedings of IJCAI'2016

[2]. S. Wang, T. Liu, and L. Tan, "Automatically

learning semantic features for defect prediction,"

in ICSE'16: Proc. of the International

Conference on Software Engineering, 2016

[3]. V. Raychev, M. Vechev, and E. Yahav, "Code

completion with statistical language models," in

ACM SIGPLAN Notices, vol. 49, no. 6. ACM,

2014, pp. 419-428.

[4]. Jian Li, Pinjia He, Jieming Zhu, and Michael R.

Lyu.2017. "Software Defect Prediction via

Convolutional Neural Network" at IEEE

International Conference on Software Quality,

Reliability and Security, 2017

[5]. Z. He, F. Peters, T. Menzies, and Y. Yang,

"Learning from open-source projects: An

empirical study on defect prediction," in

ESEM'13: Proc. of the International Symposium

on Empirical Software Engineering and

Measurement, 2013.

[6]. N. A. Abou-Elheggag, Estimation for Rayleigh

distribution using progressive first-failure

censored data, Journal of Statistics Applications

and Probability 2(2) (2013) 171-182.

[7]. J. Wang, B. Shen, and Y. Chen, "Compressed c4.

5 models for software defect prediction," in

QSIC'12: Proc. of the International Conference

on Quality Software, 2012.

[8]. T. Gyimothy, R. Ferenc, I. Siket, "Empirical

Validation of Object-Oriented Metrics on Open

Source Software for Fault Prediction", IEEE

Transactions on Software Engineering, vol. 31,

no.10, pp. 897-910, 2005.

[9]. S.W. Haider, J.W. Cangussu, K.M.L. Cooper, R.

Dantu, "Estimation of Defects Based on Defect

Decay Model: ED3M", IEEE Transactions on

Software Engineering, vol. 34, no. 3, pp. 336-

356, 2008.

[10]. R. M. El-Sagheer, Inferences using type-II

progressively censored data with binomial

removals, Arabian Journal of Mathematics 4 (1)

(2015) 127-139.

[11]. K. Herzig, S. Just, and A. Zeller. It's not a bug,

it's a feature: how misclassification impacts bug

prediction. In ICSE'13, pages 392-401.

