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ABSTRACT 

 

Predicting defects defines the proactive process of classifying the defects that can be found in entire software’s 

content, within and cross-project codes for producing high quality product with optimized cost. Error 

prediction in open source software is more crucial due to its inherent complexity and the large repository of 

contributors. In this paper we present the meta-stacked regression model (MSRM) which improvises the 

Rayleigh Probabilistic distribution for feature selection estimates. Firstly, a heuristic bug mining approach is 

adopted to mine the parameters reported by developers and contributors of various Open source projects 

(Bugzilla, Eclipse, Mozilla) activity logs. In the second part, Stacked Regression is compared to Neural Networks 

and Linear Support Vector Machine models in terms of the bug prediction performance with Feature 

importance and Correlation amongst parameters. The results show that the ensemble based Stacked regression 

has better precision and F-measure compared to simple machine learning models. The MSRM model accurately 

predicts and classifies bugs with accuracy of 96.8% and reduces the impact of false positives by recall of 71.2%. 
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I. INTRODUCTION 

 

The occurrence of bugs is a deterrent in any software 

project cost estimation and directly affects the quality 

and success of any software management. It can affect 

macroscopic elements like resource allocation, project 

planning and bidding, as well as micro-level phase 

wise design and execution hence bug estimation at an 

early stage of software testing has led to extensive 

research efforts. Bugs can reduce the reliability of a 

software system affecting its estimation and model 

accuracy. Boehm’s constructive cost model COCOMO 

and COCOMO II [3], Albrecht’s function point 

method [2] and Putnam’s software life cycle 

management (SLIM) [15] are the initial algorithmic 

estimation methods which were used for software 

estimation by Constructive Cost Model is by far the 

most commonly used because of its simplicity for 

estimating the effort in person-month for a project at 

different stages.  

 

The most fundamental calculation in the COCOMO 

model is the use of the Effort Equation to estimate the 

number of Person-Months required developing a 

project. The other results including the estimates for 

Requirements and Maintenance are derived from LOC 

and effort equation. However, the model estimates the 

cost and schedule of the project, starting from the 

design phase and till the end of integration phase. For 

the remaining phases a separate estimation model 

should be used. Also, since the cost estimation may 

vary due to changes in the requirements, staff size, 

and environment in which the software is being 

developed. This paper hence focuses on feature 

selection of reported bug attributes by proposing an 

Integrated Meta-Stacked Regression Model (MSRM) 

improvising cost of Bug estimation and prediction 

accuracy. 
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The remainder of this paper is organized as follows: 

Sect. II discusses about the related literature review 

and its shortcomings. Section III discusses about the 

methods involved in implementing the various meta-

classifiers. 

 

Section IV discusses the proposed MSRM process flow 

on various classifiers. Section V discusses the results 

and paves way for further research. 

 

II. RELATED WORK 

 

Barry Boehm et.al [3](2000) addressed on an overview 

of a variety of software estimation models indicating 

that neural-net and dynamics-based techniques are 

less mature than the other classes of techniques and 

are challenged by the rapid changes in software 

technology. The key to arriving at sound estimates is 

to have a grasp of the factors which are driving the 

costs of the project at hand to support the project 

planning and control functions performed by the 

management. 

 

S.Wang et.al [2](2016) proposed to bridge the gap 

between programs’ semantics and defect prediction 

features by representation-learning algorithm. Deep 

Belief Network (DBN) was adopted to learn semantic 

features from token vectors extracted from programs’ 

Abstract Syntax Trees (ASTs) and evaluated on ten 

open source projects. Results showed improvement in 

WPDP 14.7% in precision, 11.5% in recall, and 14.2% 

in F1. For CPDP, the semantic features based 

approach outperforms the state-of-the-art technique 

TCA+ with traditional features by 8.9% in F1 score. 

 

The first contribution of our work is to find the set of 

priority attributes that affect the cost of bug 

estimation the most. Second is to evaluate the stacked 

classifiers (Regression, Neural Network, Linear SVM) 

with density distribution in terms of prediction 

accuracy and F1 score.  

  

III. METHODOLOGY  

 

Feature selection aims to find a Q-dimensional subset 

of features, Set Q, (QF) that optimizes classifier 

performance and optionally minimizes the feature set 

size. The primary reasons to use feature selection are 

that it enables the machine learning algorithm to train 

faster, improves the accuracy of a model with the 

right subset and it substantially reduces over fitting. 

With a carefully chosen set A ⊂ R, we can classify a 

new data point x ∈ R d by checking whether f(x) ∈ A.  

 

3.1  Logistic Regression Model 

The regression model considered for classification of 

bug occurrence can be written in the form 

For n independent pairs (xi, yi), i=1,2,.. n where 

x’i =(x0i,x1i........, xni). For the outcome Yi, the logistic 

regression model assumes that  

P(Yi=1 for xi) = µ(xi) .................................................(i)  

 where µ(xi)=eg(xi)/ (1 + eg(xi)) with g(xi)=x’iß............(ii) 

The maximum likelihood is obtained for parameter 

estimates and the fitted values are specified as 

µ’(xi) = µ(xi, ß) i.e. logit[µ (x)]= x’ ß......................(iii) 

 

3.2  Linear Support Vector Model 

Linear Classifiers define the margin as the width that 

the boundary could be increased by before hitting a 

datapoint. Support Vectors are those data points that 

the margin pushes up against linear classifier with the 

maximum margin. This is called LSVM. 

 
Figure 1. Linear Support Vectors as function of weight 

and bias 

The linear objective is expressed as  

ℱ (xi,xj)=xiTxj …......……………………………….(iv) 
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The corresponding goal of weights and bias is given as 

w =Σαiyixi    ;         b= yk- wTxk……………………...(v) 

for any xk such that αk  0 .Here, each non-zero αi 

indicates that corresponding xi is a support vector and 

classifying function will have the form 

ℱ (x) = ΣαiyixiTx + b...............................................(vi) 

  

3.3  Radial Basis Function Neural network Model 

The objective of Neural system is to find a progression 

of weights that will give important values in the yield 

when determined particular cases of its information. 

Each node in hidden layer gain input from the input 

layer, which are multiplexed with proper weights and 

reduced. 

 
Figure 2. The mathematical analogy of ANN with 

synaptic structure of Neural Systems with output f(x) 

 

3.4  Rayleigh’s Density Distribution 

The Rayleigh distribution[6] is a special case of the 

Weibull distribution, which provides a population 

model useful in several areas of statistics, including 

life testing and reliability study. Rayleigh distribution 

RD (Ø) is employed in parameter estimation using 

different types of censoring and non-censoring data 

and written as :- 

Probability Distribution Function (PDF) 

=  2 * Øx*e-Øx2 where x>0 and Ø>0.............(vii) 

Also Cumulative Distribution Function (CDF)  

= 1-e-Øx2 ............................................................(viii) 

 

 

 

 

 

 

IV.  PROPOSED FRAMEWORK 

 

In this paper the following steps were taken in the 

process of model building of MSRM :- 

 

1 ) Data Extraction  

The bug reports of different products of Eclipse, 

Mozilla and Bugzilla [5]open source software were 

retrieved from the CVS repository and saved in .csv 

format from source :  http://bugzilla.mozilla.org 

2) Data Pre-Processing & Preparation  

Remove missing and Noisy data by setting all non zero 

value to 1 for depends on and duplicate count 

attributes. Divide the Dataset into Training data for 

Model creation and testing data for validation (60:40). 

 

 
Figure 3. A Sample Bug report for Open Office Project 

with BugID 1425569 

3) Modeling  

Build three models based on LSVM, RBNN classifiers 

and Regression model. 

Calculate the summary weight of bug attributes by 

using information gain criteria. Train the Model by 

using most relevant twelve attributes to predict and 

the bug severity. 

Apply Rayleigh probability density to predict defect 

density for different phases of project life cycle. 

4) Testing and Validation 

 Test the model for remaining dataset. Evaluate and 

access the performance of prediction models.  
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Figure 4. Overview of our proposed MSRM for defect prediction 

 

 

Several experiments were conducted by recording the 

bug repository to study the performance of the 

proposed stacked model in comparison with existing 

classifiers. The experiments were run on a 2.5GHz i5-

3210M machine with 4GB RAM.  

To measure defect prediction results, we use four 

Evaluation metrics: Correlation, Precision, Recall, and 

F1score[3]. 

Pearson’s Correlation: It is used as a measure for 

quantifying linear dependence between two 

continuous variables X and Y. Its value varies from -1 

to +1. Pearson’s correlation is given as: 

 

YX

YX

YX




,cov
, 

..........................(ix) 

F-measure: Weighted (by class size) average F-

measure was obtained from the classification using 

feature subset with the same three classifiers as above. 

It describes the Harmonic mean of Precision and 

Recall. 

The general formula for positive real β is given by; 

 
recallecision

recallecision
F





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Pr
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
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.............(x) 
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
  ..............................................(xi) 

          

FNTP

TP
recall




....................................................(xii) 

 

Here Precision is the ratio of all relevant correctly 

classified bugs to all retrieved bugs. 

 

Recall is measured as the fraction of relevant items 

retrieved out of all relevant items including False data 

not correctly classified. 

 

V. RESULTS AND DISCUSSION 

 

The features are filtered according to the importance 

derived from the feature importance graph of LVSM. 

The positive and negative values in the graph show 

the role of feature in classifying positive and negative 

values. Therefore we select the extremities of the 

features for both the classes in case of Linear SVM. 
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Figure 5. Bug Attributes Selected by Feature 

Importance Graph 

 

 
 

Figure 6. Correlation Graph for Most relevant Feature 

Selection 

 

 

 

 

 

 

Table 1. Bug Attribute Description  

Attribute 

 

Short Description 

* Severity It is the Response Categorical 

Variable This Indicates how severe 

the problem is. 

Bug Id The unique numeric id of a bug 

Priority This field describes the importance 

and order in which a bug should be 

fixed compared to other bugs. P1 is 

considered the higher and P5 is the 

lowest. 

Resolution The resolution field indicates what 

happened to this bugs 

Status The status field indicates the 

current state of bug 

(New,Resolved,Progress) 

Number of 

Comments 

Bugs have comment added to them 

by user . #comments made to a bug 

report 

Create Date When the bug was field. 

Dependency If this bug cannot be fixed unless 

other bugs are fixed (depend on), or 

this bug stops other bugs being 

fixed (blocks) their number are 

recorded here. 

Summery A one-sentence summery of the 

problem. 

Date of 

close 

When the bug was closed. 

Keywords The administrator can define 

keywords which you can use to tag 

and categorize bugs e.g. the Mozilla 

project has keyword like crash and 

regression. 

Version The field define the version of the 

software the bug was found in. 

CC List A list of people who get mail when 

the bug changes. #people in CC list 

Platform 

and OS  

These indicate the computing 

environment where the bug was 

found. 

Number of 

Attachment 

Number of Attachment for a bug. 

Bug Fix 

Time 

Last resolved time-Opened time. 

Time to fix a bug. 
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Next, Stacking was performed by applying Rayleigh 

defect density on generating the mean probabilities of 

the classifiers hence further performance tuning led to 

the improved accuracy of the testing dataset as 

compared to the individual classifiers. Figures 7-9 

depict the results of proposed MSRM model applied 

on 204545 bugs to depict the F1 Score. 

 
Figure 7. Bug Reports on Severity Parameter for 

Eclipse 

 
Figure 8. Severity Classification for Mozilla Product 

 

 
Figure 8. No. Of bugs Correctly classified for Bugzilla 

with Severity Prediction. 

 

The final evaluation metric is to compute the error in 

prediction by the stacked regression Model(MSRM) as 

compared to the NN, LSVM and Linear regression 

Model. 

Root mean squared error (RMSE): RMSE is a quadratic 

scoring rule that also measures the average magnitude 

of the error. It’s the square root of the average of 

squared differences between prediction and actual 

observation. 

...................................(xiii) 

The RMSE values as calculated on the bug dataset 

classification and prediction was 

Table 2. Comparative Error Estimates 

Model RMSE Value 

Neural Network   0.0184908700285 

Linear SVM       0.0136835156595 

Linear Regression 0.0115793611054 

MetaStacked Regression 0.00989779285401 

  

 
Figure 8. Comparative Predictive error of MSRM 

Model. 

 

VI.  CONCLUSION 

 

It has been clearly demonstrated that Meta stacked 

regression analysis can be successfully applied to 

formulate a prediction model for bug classification 

and hence effort estimation. It is feasible to 

incorporate and implement defect prediction as part of 

software development process, particularly test 

process. The data collected has been tested on open 

source Projects with datasets (Mozilla, Eclipse,Bugzilla) 

and have scope for extension to other software 

development projects with their respective metrics. 
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Future enhancements include adopting the MSRM 

model for web-based and component-based software 

data sets.  
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