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ABSTRACT 
 

Rice spikelets are borne on the branches of an inflorescence known as a panicle. The weight of an individual rice 

grain for a cultivar is almost constant. Consequently, yield improvements in a rice cultivar are always associated 

with an increase in grain number per unit ground area. Understanding the relationship between the number of 

spikelets when they differentiate and the number of grains at harvest is important in understanding the basis of high 

yield in rice. Effective panicle number, grain number, and grain weight are the three components of rice yield, of 

which grain number shows the highest variation and makes the largest contribution to yield output. Rice panicle 

number per plant is a grain yield component that directly influences rice yield. The identification of the genes 

controlling panicle number will play a vital role in high -yield rice breeding. Studies on QTL of panicle number in 

rice are limited to morphological description and primary mapping. Rice grain number is quantitatively inherited 

and great deals of quantitative trait locus (QTL) mapping for grain number have been conducted using various 

mapping populations. Panicle morphology and grain number are influenced by the development of the panicle main 

axis, primary and secondary branches, spikelet development, and developmental phase transitions. Grain number is 

linearly correlated with total plant N content. 
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I. INTRODUCTION 

 

With the advent of DNA molecular markers, QTL 

mapping has become a routine strategy for the discovery 

of genes involved in complex quantitative traits. 

Thousands of QTL have been mapped for important 

agronomical traits in rice. Although primary mapping 

populations including F2, recombinant inbred lines 

(RILs) and doubled haploid lines (DHs) have been 

widely used for QTL mapping in rice (Li et al., 1995; 

Yu et al., 1997; Xu et al., 2004; Fan et al., 2005; Marri 

et al., 2005), QTL can only be localized to a genomic 

region (confidential region) rather than a locus in those 

populations. Following the primary mapping, advanced 

populations such as near isogenic lines (NIL) and 

chromosome segment substitution lines (CSSL) can be 

used to map QTL to a locus as a Mendalian factor by 

blocking the genetic background noise (Lin et al., 2002; 

Zhang et al., 2006; Wang et al., 2006). Based on this 

strategy, several QTLs have been isolated in tomato 

(Frary et al., 2000) and rice (Yano et al., 2000; 

Takahashi et al., 2001; Li et al., 2003) in recent years. 

The common aspect in all the QTL cloning work is to 

exploit high quality NILs as advanced mapping 

populations. Rice is a staple food for many countries. As 

the world population increases, rice production has to be 

raised by at least 70% over the next three decades to 

meet growing demands. In the long run, development of 

high yield varieties is one of the most important goals in 

rice cultivation. Complex traits such as rice yield 

components are quantitative inheritance, which are 

contributed by multiple genes each with small efect, 

namely quantitative trait loci (QTL). Number of 

spikelets per panicle (SPP) is highly associated with 

number of grains per panicle (GPP), which is a very 

important component of yield. These traits have been 
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frequently studied because of their importance in rice 

genetic improvement with the advent of the molecular 

markers (Xiao et al., 1996; Zhuang et al., 1997; Xiong et 

al., 1999; Xing et al., 2002, 2008).rice spikelets are 

borne on the branches of an inflorescence known as 

panicle.The number of spikelets per panicle (SPP) 

strongly influenced by primary and secondary branches 

is also important for determining yield potential in rice 

(Zhang et al., 2006). Many studies have detected 

quantitative trait loci (QTLs) for SPP using various 

segregating populations (Thomson et al., 2003; Suh et 

al., 2005; Liu et al., 2010). These QTLs are located 

across the chromosomes and provide valuable 

information on the genes that control SPP in different 

populations.  

  

A. Nitrogen fertilizer increases spikelet number per 

panicle  

Growing populations will demand higher rice yield, 

which is partly limited by flower number per panicle. 

Therefore, increasing the flower number per panicle via 

breeding and/or crop management is indispensable for 

increasing rice yield. Nitrogen fertilizer might affect 

cytoKinin (CKs) levels to increase rice flower numbers. 

A correlation between nitrogen nutrition and CKs was 

demonstrated many years ago (Hirose et al., 2008; 

Salama & Wareing, 1979). CKs regulate rice branch and 

flower numbers (Barazesh & McSteen, 2008). CKs 

oxidase/dehydrogenase (OsCKX) is an enzyme that 

degrades CKs and, in many plant species, is responsible 

for the majority of metabolic CKs inactivation (Werner 

et al., 2003). Reduced expression of OsCKX2 causes 

CKs accumulation in inflorescence meristems and 

increases the number of reproductive organs and yield 

(Ashikari et al., 2005).  

 

B. A model explaining genotypic and environmental 

variation of rice spikelet number  

Many hypotheses have been proposed to explain 

ecophysiological process that determines spikelet 

number per unit area. Those hypotheses may be 

classified into the following three types. The first is that 

the spikelet number is proportional to nitrogen (N) 

content of plant (product of percentage N and crop 

biomass per unit area) at around spikelet formation stage 

(Murayama, 1969; Hasegawa et al., 1994; Kobayashi & 

Horie, 1994; Horie et al., 1997). The second is that the 

spikelet number is proportional to biomass production 

during the period from panicle initiation to heading 

(Kropff et al., 1994). The third is that the final spikelet 

number is represented as the difference between the 

numbers of spikelets differentiated and degenerated; the 

former is proportional to the crop-N content at the late 

spikelet differentiation stage and the latter to crop 

growth rate (CGR) during the period from the late stage 

of spikelet differentiation to heading (Wada, 1969). 

C. Characterization of near-isogenic lines carrying 

QTL for high spikelet  

 

Grain yield of rice (Oryza sativa L.) has four 

components: panicle number, total spikelet number per 

panicle (TSN), grain weight and spikelet fertility. There 

is wide variation in TSN among cultivated rice varieties 

and it is one of the targets of breeding programs to 

improve rice yield. However, genetic analysis of TSN is 

difficult because it is a complex trait controlled by 

multiple genes and influenced by environmental 

conditions. Quantitative trait locus (QTL) analysis using 

DNA markers has recently made it possible to 

understand the genetic basis of TSN and other complex 

traits. QTLs for TSN have been identified using various 

segregating populations, including F2 populations, 

recombinant inbred lines (RILs), and doubled haploid 

(DH) lines (Hittalmani et al., 2003;  Kobayashi et 

al., 2004; Mei et al., 2005; Xing et al., 2002; Yagi et 

al., 2001; Zhuang et al., 1997; Zou et al., 2005). Since 

the 1960s, IRRI-bred rice varieties have been distributed 

worldwide and used by both plant breeders and farmers. 

IR64, which was released in 1985, had been widely 

accepted as a high-quality rice variety in many countries 

(Khush, 1987). Because of the wide adaptability of 

IR64, breeding materials with an IR64 genetic 

background, such as DH lines, RILs and thousands of 

mutant lines, have been developed for research and 

improvement of rice varieties (Guiderdoni et 

al., 1992; Wu et al., 2005). In the late 1980s, a breeding 

program to develop a new plant type (NPT) of rice was 

launched at IRRI with the goal of increasing yield 

potential under tropical environments. Unlike IR64, the 

NPT varieties have several agronomic traits inherited 

from tropical japonica-type varieties: low tiller number, 

low number of unproductive tillers, large panicle, thick 

culm, lodging resistance and large, dark green flag 

leaves (Khush, 1995). Thus, the NPT varieties were 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3405953/#b9-bs-62-18
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3405953/#b13-bs-62-18
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3405953/#b13-bs-62-18
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3405953/#b19-bs-62-18
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3405953/#b30-bs-62-18
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3405953/#b34-bs-62-18
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3405953/#b34-bs-62-18
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3405953/#b38-bs-62-18
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3405953/#b39-bs-62-18
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3405953/#b10-bs-62-18
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3405953/#b7-bs-62-18
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3405953/#b7-bs-62-18
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3405953/#b28-bs-62-18
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3405953/#b11-bs-62-18
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chosen for experiments designed to improve the yield 

potential of IR64. 

D. A novel gene controlling the number of grains 

per panicle in rice  

Rice yield is a complex trait multiplicatively determined 

by three component traits: number of panicles, grain 

weight and number of grains per panicle (NGP) (Hua et 

al., 2002). Of these, NGP is shown to be highly 

correlated with yield and acts as a crucial component in 

determining rice yield (Luo et al., 2013). Therefore, 

dissection of its genetic basis would be of great value in 

breeding high-yielding rice varieties. During the last 

decade, although many QTLs/genes controlling the NGP 

trait have been mapped in rice (Tian et al., 2006; 

Ahmadi et al., 2008; Xing et al., 2008; Liu et al., 2009; 

Deshmukh et al., 2010; Zhang et al., 2013), only a few 

related genes have been cloned (Ashikari et al., 2005; 

Huang et al., 2009; Tabuchi et al., 2011), and the 

molecular mechanism of NGP trait formation is still far 

from clear. Genetic analysis indicates that the ngp4c 

phenotype is controlled by a single recessive gene, 

tentatively named as NGP4c(t) and the NGP4c(t) gene 

was finally mapped to 81.7 kb region, where no gene 

involved in the NGP trait formation had been reported 

previously.  

 

E. Genetic mapping of a QTL controlling leaf width 

and grain number in rice 

Panicle morphology and grain number are influenced by 

the development of the panicle main axis, primary and 

secondary branches, spikelet development, and 

developmental phase transitions. The transition from the 

adult phase to the reproductive phase involves the 

participation of sucrose, miR156, and miR172 (Tsai & 

Gazzarrini, 2014; Zhu & Chris, 2011). During this 

transition, the gain-of-function mutation of OsSPL14 

causes release from suppression by miR156, and the 

grain number is increased owing to the accelerative 

development of secondary branches (Jiao et al., 2010; 

Miura et al., 2010). Two major quantitative trait loci 

(QTLs),qGNPP1-1 and qFLW1-1, which control grain 

number per panicle and flag leaf width, respectively, 

were detected by QTL analysis on the same interval of 

chromosome 1 between markers RM3521 and RM8111 

using an F2 population derived from the cross HP× 

Nipponbare. Thus, a single QTL, designatedqLG1(Leaf 

widthand grain number 1), was presumed to control both 

traits (tian et al., 2014).   

 

F. Designing and Validation of Primers for High 

grain number 

The cultivated rice (Oryza sativa L.) is rich in genetic 

diversity apart from highly diverse 21 wild progenitors 

and the African cultivated rice, Oryza glaberrima Steud. 

In addition to staple food, rice has extensive protective 

and curative properties against human ailments like 

epilepsy, chronic headache, rheumatism, paralysis skin 

diseases, diabetes, arthritis, indigestion, blood pressure, 

colon cancer, internal rejuvenation of tissues and 

overcoming postnatal weaknesses. Three hundred sixty 

nine QTLs distributed across all over the 12 

chromosomes of rice controlling grain number per-

panicle have been identified (http://www.gramene.org) 

using various mapping populations derived from inter-

specific indica-japonica, indica-indica and japonica-

japonica crosses. Some of them were fine mapped to less 

than 1 cM intervals and few have been cloned using 

QTL-based near isogenic lines (NIL). Genes controlling 

grain number per-panicle directly or indirectly, i.e. 

Gn1a, Ghd7, Dep1, fz, Sp1, rcn2, lax1 and Apo1 also 

have been isolated from rice (Jin, 2008; Li ,2009; Piao, 

2009; Zha, 2009). 
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