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ABSTRACT 

 

The application of method of characteristics in perturbative quantum chromodynamics (pQCD) is relatively 

new. In the present paper, we obtain an analytical form of gluon energy density function at small-x by using 

the Leading Order (LO) solution of Dokshitzer, Gribov, Lipatov, Altarelli, Parisi (DGLAP) equations. 

Comparison with exact results is also reported.  
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I. INTRODUCTION 

 

Dokshitzer, Gribov, Lipatov, Altarelli, Parisi (DGLAP) 

evolution equations [1]–[4] have been playing very 

important role in understanding the dynamics of 

evolutions of quark and gluons. Several approximate 

and numerical solutions of DGLAP evolution 

equations are available in literature [5]–[8], but their 

exact analytical solutions are not known [9], [10]. 

Because these evolution equations are partial 

differential equations (PDE), their ordinary solutions 

are not unique solutions, rather a range of solutions. 

Moreover, they are based on an ad-hoc assumption of 

factorizability of x and t dependence of the gluon 

distribution G(x,t). These limitations can be over 

come by the use of Method of Characteristics [21]. 

 

The application of method of characteristics in 

perturbative quantum chromo-dynamics (pQCD), 

specially in the solution of DGLAP equations is 

relatively new. Some of these applications are 

available in recent literatures [13]–[19], with 

considerable phenomenological success. In some of 

our earlier communications, we have solved DGLAP 

equations in different orders [15]–[19] and in this 

paper, we obtain an analytical form of gluon energy 

density function at small-x by using the Leading 

Order (LO) solution of DGLAP equations which is 

free from the above mentioned limitations. 

 

II.  FORMALISM 

 

The DGLAP equations for gluon distribution have the 

standard form [1]–[4] : 
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,  nf being 

the number of flavours.  

 

To evaluate the integrals of eq.(1), we introduce a 

variable u [8], [15] as 1u z  . Since 

1,  so 0 1x z u x     , x z  can be approximated at 
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small-x as 1(1 )x z x u    (1 )x u x xu     and hence 

Taylor's expansion of 
2 ( , )sF x z t  and ( , )G x z t  in 

approximated form [11], [12] at small-x can be given 

by : 
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Since x is small, terms containing x2 and higher 

powers of x are neglected. Using eq.(2) in eq.(1) and 

performing the integrations w.r.t. z , 
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A reasonable approximate relationship between 

),(2 txF S  and ),( txG , representing the relative strength 

of gluon to singlet distribution, can be taken as 

2 ( , ) ( , )SF x t kG x t , where k is a suitable function of x 

or may be a constant [7], [14]. For simplicity and well 

adaptation to method of characteristics, k is 

considered here as a constant with 0 1k  , since 

gluon distribution is always higher than singlet 

distributions at any Q2. Using this relationship in 

eq.(3), 
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where,  

( ) ( ) ( ) and ( ) ( ) ( )H x P x kR x J x Q x kS x    . Eq.(5) 

is a first order PDE, which can be solved by Method of 

Characteristics [21]. 

 

The final solution of this equation is given by [13]–

[19],  
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where 0( , )G x t  is the input function obtained from 

the boundary conditions.  

 

The gluon energy density function is given by [20], 

0 0

0

3

1 68 1 68
11 11

9 9

0 0

0 0

0

2

0

2

0

0

( , )
( , )

4

3

4
4 6

3
1

68
11

9

4 11
ln

4 2exp

1 4 68
3 11 ln

2 3 9

4
ln

N

N

k k

G x t
G x t

R

k

t t
x

t t
k

t
k

t

tk
k

t

x

 











   
    

   

 

 
              

         
 

   
     

   

    
        

     


0

1 68
11

9
0 04

3 ln
3

k
t tk

t t



 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

       
      

      
  

 

                      (7) (12) 

where RN is the target nucleon/nuclear radius. 

 

III. RESULTS AND DISCUSSION 

 

For Quantitative analysis, we use MRST 2001LO input 

[8] given by the formula 
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   
6.490.1 0.53.08 1 1 2.96 9.26xg x x x x     and 

considered Q20=4 Gev2, QCD cut-off parameter =220 

Mev and nf=4 [23]. The best fit value of k  (0.01) 

obtained through least-square method of curve fitting 

is considered. Also, we have used RN=5 GeV-2 [24]. 

 

The numerical analysis shows that the gluon energy 

density in LO increases with decrease in x at a 

representative Q2=100 GeV2 as shown in the figure. 

This increase is in accordance with the MRST exact 

results. 

 
Figure 1. Predicted gluon energy density function 

ϵg(x,t) at a representative value of Q2, i.e., at Q2=100 

GeV2 and its comparison with MRST 2001LO exact 

results. 

 

IV. CONCLUSION 

 

In this paper, we have obtained an analytical form of 

gluon energy function ϵg(x,t) at small-x by using the 

Leading Order (LO) solution of DGLAP equations 

which is free from any ad-hoc assumption of 

factorizability of x and t dependence. Predicted result 

shows that gluon energy density increases with 

decreasing Bjorken-x which is in accordance with the 

MRST exact results.  
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