
IJSRST11845443 | Received : 10 April 2018 | Accepted : 20 April 2018 | March-April-2018 [(4) 5 : 1769-1778]

© 2018 IJSRST | Volume 4 | Issue 5 | Print ISSN: 2395-6011 | Online ISSN: 2395-602X
Themed Section: Science and Technology

1769

Light-weight Process variation-aware instruction distribution

algorithm for Embedded GPUs
K. S. Balamurugan, G. P. Ramacharyulu, R. Sathish Kumar

Associate Professor, Department of ECE, Bharat Institute of Engineering and Technology, Hyderabad,

Telangana, India

ABSTRACT

In the Embedded systems, Graphics Processing Units (GPUs) are used to manage the huge number of

computation and to convince the timing limit. Future size, chip aging and die-parameter variations are

challenging issues in GPUs. To solve the process variation issues, some processors operate lowest operating

frequency in chip-level guard banding, that effects reduce the performance in chip-level. Some other processors

improve their performance through core-level guard banding that possibly use various operating frequency for

every core. Presents of Process variation, each cluster has a dissimilar level of degradation for the equal amount

of instructions. For that reason, a process variation-aware instruction distribution algorithm is essential to

balance the stress across the embedded GPU. Suggested light-weight process variation-aware instruction

distribution algorithm estimate weight factor of the process variation, level of stress, the current aging status,

cluster information (availability and operating frequency) and hierarchy of Real-time Application then gives a

various level of instructions to clusters to reduce the aging effect. Simulation results shown that suggested

technique improved the GPU aging in 85% and reduce the 40% overhead than compiler-based technique.

Keywords: aging-aware, process variation embedded GPUs.

I. INTRODUCTION

Graphics Processing Units (GPUs) has required to

progress the system performance in GPUs based

embedded systems such as mobile devices to satisfy

the timing constraint (H. Lee et al., 2016). Due to the

small size, nano-scale multi-core processors, including

GPUs, have faced several reliability challenges such as

aging effects and (die-to-die and with-in-die)

parameter variations (Aguilera et al., 2014). Negative

Bias Temperature Instability (NBTI) and Hot Carrier

Injection (HCI) are considered among the most

critical aging-related reliability challenges in nano-

scaled semiconductors(J. Sun, 2014).The amount of

transistor degradation caused by NBTI and HCI is

proportional to the time a transistor is stressed or

switched (X. Chen et all., 2014). Various workload

management techniques have been proposed to

balance the stress level and reduce switching activity

across the chip to minimize NBTI and HCI effects. To

improve the special effects of process variation,

normally, multi-core processors ware employed a

chip-level guard-banding method, which operates at

low frequency. Core-level guard banding allow the

various frequencies for every core. In Core-level

guard-banding, every core of a single-chip have a

various operating frequency and duty cycle, which

directs to changeable stress levels and thermal

variations in the chip. To address the above challenges,

proposed algorithms to calculate approximately the

aging status of the GPU and allocate the workload

across the GPU with respect the process variation and

the core-level guard-banding. To express the

unbalanced workload distribution with the process

variation

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

K. S. Balamurugan et al. Int J S Res Sci. Tech. 2018 Mar-Apr;4(5) : 1769-1778

1770

and core-level guard-banding, carry out experiments

by real world applications. GPGPU-Sim simulator

with NVIDIA’s Tegra TK1 configuration is used. The

SP and SFU units are mapped into a process variation

map that is generated in (D.Gnad, 2015). During the

experiments, evenly distribute the instructions to the

SP and SFU units. Due to the PV and cluster-level

guard-banding, the stress is not equally spread across

the GPU even if every cluster processes the equal

number of instructions. (H. Lee et al., 2017) point out

that the current warp schedulers and the instruction

dispatchers have a limitation in minimizing the NBTI

and HCI effects in the process variation. Most of

research suggested minimizing the effects of NBTI and

HCI on multi/many-core systems. (J. Henkel et al.,

2013) surveys different trade-off points connecting

with power, A job migration method (M.Banda et all.,

2013) is planned to reduce the effect of NBTI. The

planned method uses the spare processor to migrate

responsibilities from the near-to-die processor to the

young processor. But, this technique is not relevant to

the GPUs. The proposed techniques assign the

application’s function to processors based on the

application information and the current NBTI status.

(T. R. Mck et al., 2017) Job mapping technique for

heterogeneous multiprocessors (HMP) is proposed.

Based on the application profile, the sensing data,

performance counters and the job are mapped to

various processors to get better chip era. Conversely,

each and every one the cores in the GPU carry out the

same kernel function, it is rigid to allot special kernel

functions to core on the GPU. Besides, obtainable

GPUs do not permit mapping between the tasks and

cores on the GPU when the mapping is controlled by

the hardware. A thread-to-core mapping method is

planned in (M. Shafiqu et al., 2015) to take full

advantage of the performance of a many-core

processor.

(Lotfi et al., 2015) suggested compiler-based

techniques to decrease the NBTI effect and increase

the lifetime of the GPU. In run-time, the Just-In-Time

(JIT) compiler generates a strong kernel function

based on the current aging status of the GPU. Strong

kernel needs supplementary workloads to reassign the

workloads from the corrupted cores to strong cores.

The amount of extra workload depends on the

number of corrupted cores. The proposed procedure

founds the most favorable amount of SMs to manage

the GPU applications and direct the clock signal at SM

granularity. But the embedded GPUs contain few SMs

only. Different scheduling properties are assigned to

each application. (H. Lee et al., 2016) proposes a fine-

grained GPU resource management framework that

framework partitions the GPU workload into tiny-

workloads to execute preemption. Since this outline

just considers periodic applications, it has restrictions

in partitioning random GPU workloads during run-

time. Few proposed scheduling framework for event-

driven real-time systems that generates the mapping

between the Streaming Multiprocessors (SMs) and the

applications in order to offer temporal and spatial

preemption. For that reason, well-established

workload management technique is needed to

reconfigure the cluster of cores and distributes the

workload to reduce the NBTI and HCI effects in the

embedded GPUs. In this circumstance, Suggested

Light-weight Process variation-aware instruction

distribution algorithm, allots the instruction to cluster

with respect PV for improve the ageing in embedded

GPU. The rest of the document is prearranged as

follows. In Section II, Problem formation is illustrated

for improve the ageing-aware in embedded GPU

Section III, Proposed algorithm was explained step-

by-step. In Section IV, simulation results are discussed

and finally section V, bring to a close the research

work.

II. PROBLEM FORMATION

Aging factor depends on the actual stress/recovery

phase, degradation by NBTI depends on supply

voltage Vdd, temperature T, threshold voltage Vth, and

device parameters, comprising for instance oxide

geometrical and electrical parameters, activation

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

K. S. Balamurugan et al. Int J S Res Sci. Tech. 2018 Mar-Apr;4(5) : 1769-1778

1771

energy, device size, and load. Transistors age mainly

when they are under stress (NBTI) and switch their

state (HCI).

Table 1. Basic information in NBTI and HCI

NBTI PMOS-

Under

stress

Vth is increased due to

traps, which are

generated in the

interface between the

oxide layer and

silicon/channel.

PMOS-

Not

under

stress

Vth is decreased

(recovery phase)

HCI NMOS Collision between the

accelerated electrons and

the gate oxide interface

generates electron-hole

pairs.

In NMOS transistors, the collision among the

accelerated electrons and the gate oxide interface

generates electron-hole pairs. After that, free

electrons get trapped in the gate oxide layer and the

Vth is increased since NMOS transistor changes its

state, the total amount of Vth shift is most sensitive to

the number of state transitions. In short, HCI depends

upon the switching activity. (H.Lee et al., 2017)

proposed a fresh technique to reduce the NBTI and

HCI effects on an embedded GPU under the process

variation. The proposed technique includes an aging-

aware cluster formation algorithm that creates core

clusters based on the present NBTI and HCI

information. In suggested algorithm, each cluster has

less aging variation and aged core clusters are power-

gated during run-time. A process variation-aware

workload distribution algorithm that generates the

instruction distribution level based on the process

variation information. The proposed algorithm takes

aging and the process variation information about

active core clusters and generates the instruction

distribution ratio to evenly distribute the stress across

the GPU under the process variation. An instruction

distribution unit that incorporates the existing warp

scheduler and instruction dispatch unit. During run-

time, right before the kernel launch, the proposed

instruction distribution unit is configured based on

the weight factor distributed algorithms. After the

configuration, the instructions are distributed based

on the instruction distribution level to minimize the

NBTI and HCI effects.

Aging-Aware Cluster Formation

The degradation of the components in a multi/many-

core processor is closely related to stress and power

management. Moreover, the aging gap between the

clusters will become larger over time due to the

process variation, cluster-level guard-banding, and

unbalanced stress distribution. In order to minimize

the effects of the process variation and the cluster-

level guard-banding, the proposed aging-aware cluster

formation algorithm (re)configures the clusters by

using the current aging information. Before the host

launches a kernel function, the host obtains the

current aging information for all the cores in the GPU

through the delay monitors. Then, the host sorts the

cores based on the aging information in descending

order and groups the cores to create the clusters. Thus,

each cluster has cores that have similar degradation

levels and minimum aging variations. The sorting and

clustering process do not need to consider the process

variation at this point because the amount of

degradation is the result of the process variation. After

that, each cluster sets its operating frequency by

finding a core with minimum operating frequency.

Since the entire GPU may not be required to execute

the kernel function, after the clustering, the proposed

aging-aware cluster formation algorithm selects some

degraded clusters for power-gating based on the GPU

resource utilization information, which is generated

in design-time.

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

K. S. Balamurugan et al. Int J S Res Sci. Tech. 2018 Mar-Apr;4(5) : 1769-1778

1772

Figure 1. Proposed architecture for Light Embedded

GPUs.

Process Variation-Aware Workload Distribution

Algorithm

Due to the process variation, the same number of

instructions causes a different amount of degradation

for each cluster. In order to evenly distribute the

stress across the GPU, each working cluster should

process a different number of instructions. The

proposed process variation-aware workload

distribution algorithm estimates the instruction

distribution ratio between the active clusters. For each

kernel, the proposed algorithm assigns the same

number of instructions for each working cluster and

gets the aging estimation. Each working cluster will

have a different aging status due to the different

operating frequencies, which are caused by the

process variation. Then, the proposed algorithm gets

the average from the aging estimation of working

clusters and sets this average as a desired aging status

after executing the kernel function. The amount of

stress for each cluster can be obtained by subtracting

the current aging status from the desired aging status.

By using the amount of stress and the process

variation information, the instruction distribution

ratio is estimated.

Applications-aware GPU resources (re)allocation

While driving, mixture of safety critical and non-

safety applications are launched by the system

depending on the current system status. For example,

when driving on a highway, the system would launch

a set of safety critical and high priority applications

for vehicle detection. On the other hand, when

driving in a school area, the system would launch a

different set of safety critical and high priority

applications for pedestrian detection and traffic sign

recognition. At the same time, non-safety critical and

low priority application may be running on the

system. Each application would have a different

priority and deadline depending on the current system

status. Note that in this type of embedded system,

small timing violations may cause degradation in

Quality of Service (QoS), such as glitches in an

instance of a traffic sign image. However, small

quality degradation would not cause the system to fail.

Therefore, the system is a soft real-time system and

the QoS of the system highly depends on the status of

safety critical and high priority applications. The

example scenario indicates that the GPU needs to be

efficiently assigned and provide preemption

capabilities, in order to meet the deadlines of the

applications. Moreover, the results imply that the

performance overhead of launching multiple sub-

kernels may be relatively small compared to the

execution time, of the kernel, within a single launch.

The problem of run-time scheduling on a GPU-based

embedded system poses the following research

challenges: How to partition GPU kernels into

multiple sub-kernels during run-time, such that

multiple application kernels could concurrently

occupy the GPU, where the number of the

applications that meet their deadline is maximized and

How to dynamically generate a schedule for the GPU

that would increase the number of high priority

applications meeting the deadline as much as possible.

In order to address the mentioned challenges,

proposed a novel scheduling framework to partition

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

K. S. Balamurugan et al. Int J S Res Sci. Tech. 2018 Mar-Apr;4(5) : 1769-1778

1773

GPU application kernels and generate sub-kernel

launch sequences, for the GPU during run-time. Based

on the current status of GPU-based embedded systems

and application deadlines, the proposed GPU

execution schedule generator generates sub-kernel

launch sequences that maximize the number of

applications meeting deadlines.

Instruction distribution unit

The proposed instruction distribution unit

incorporates the existing warp scheduler and

instruction dispatch unit to balance the stress across

the GPU. The host configures the instruction

distribution unit using the instruction distribution

ratio before launching a kernel function. After the

host launches a kernel function, the instruction

distribution unit controls the behavior of the warp

scheduler and the instruction dispatch unit to evenly

distribute the stress over the GPU. When an

instruction is ready, the instruction dispatch unit

sends the instruction to the first available cluster and

increases the corresponding instruction distribution

counter. When all the instruction distribution

counters reach their limits, then the instruction

distribution unit resets the counters and sends the

instruction to the first available cluster. As discussed

in Section 1, the basic execution unit of the target

embedded GPU is a warp, which represents the

behavior of 32 cores. The instruction distribution unit

needs to track the instruction distribution ratio and

status for 8 clusters of cores (6 SP clusters and 2 SFU

clusters). This can be done with eight 16-bit registers

and counters. In addition, the existing warp scheduler

and instruction dispatcher need to be modified with

additional control signals and to change their behavior

depending on the status of the instruction distribution.

The area and power consumption overheads of the

above-mentioned logic are therefore negligible, i.e.,

only a few registers/counters. The performance

overhead results are presented in Section iv.

III. PROPOSED WORK

3.1. Weight Factored Distribution Algorithm

In this section, the Weight Factored Distribution

Algorithm estimates the weight factor of following

input parameters like mention given below.

 Current Aging level (A)

 Process Variation (P)

 Amount of Stress (S)

 Cluster Information (Availability, Operating

Frequency) (I)

 Application Level (Ap).

The weight factor distribution algorithm precedes the

parameters of the cluster/wrap as inputs and creates

weight factors with respect to an application specified

needs. The weight factors are evaluated in order to

find the levels of the parameters desired to reach

improved performance.

Procedure for WFD Algorithm is,

Step 1: Following are the assumptions thought-

about,

 The Availability of Cluster and operating

frequency as describe the Cluster information

level of the Cluster Cw, and Process variation

level Pw wherever 0 <P𝑤< 1, (P𝑤 = 0 means

that the all cluster in same level- run out wrap

scheduler algorithm, clusters are utmost good

and P𝑤 = 1 means that the Clusters are

dissimilar performance.)

 The Weight Factors of the four parameters,

obtainable Cluster information, Current Aging

level, amount of Stress and process variations are

Wc, Wa, Ws and Wp severally, wherever Wc =

1 and WC +Wa+WS+ WP =1.

The factors that reason importance levels like high,

medium, low and none are IH, IM,IL and 0,

respectively, Wherever their values are determined

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

K. S. Balamurugan et al. Int J S Res Sci. Tech. 2018 Mar-Apr;4(5) : 1769-1778

1774

by the system designer, and 0 <IH <IM<IL< 1. The

numbers of various importance levels the user has

such that are NH, NM, NL and NN respectively,

Wherever NH + NM + NL + NN= 3 (since the satisfied

aging level of the Cluster parameters that a user may

Specify is three)

Step 2: The weight factor of the four vital levels when

adjusted to user preferences and battery power

are WIH, WIM, WIL and WIN, respectively.

 H H M M L L N N wN WI N WI N WI N WI P

 M
M H

H

I
WI WI

I

 L
L H

H

I
WI WI

I

 0NWI

 M L
H H M M L H w

H H

I I
N WI N WI N WI P

I I

Step 3: The Weights of four importance levels are

evaluated by using the following

calculations

H

W
H

H H M M L L

I

P
WI

N I N I N I

M

W
M

H H M M L L

I

P
WI

N I N I N I

L

W
L

H H M M L L

I

P
WI

N I N I N I

 0NWI

From these formulas the weight factor ranks of each

parameter are evaluated. These weights factors values

are set as the input to the suggested light weight

process variation-aware instruction distributed

algorithm and estimate the instruction distribution

ratio to clusters.

1. The proposed algorithm receives the following

information as input: resource utilization for

current kernel RK, Types of computational

components T, delay information D, and warp

size Nwarp.

2. The computational components are sorted based

on the current delay information.

After that, based on the warp size, Nwarp, the

components are clustered and the cluster

information is updated.

3. Next, the proposed WFD algorithm selects

clusters for power-gating based on the resource

utilization information.

The remaining clusters are selected as the

running clusters.

4. The operating frequency is selected for working

clusters.

At the end, the clustering information, which

includes power-gating, and the operating

frequencies are returned.

5. Takes the working cluster information Cwork, the

process variation information PV, and the

number of instructions Ninst as inputs.

6. At the beginning, the algorithm evenly

distributes the instructions to working clusters.

The algorithm estimates the aging status of each

working cluster using the number of

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

K. S. Balamurugan et al. Int J S Res Sci. Tech. 2018 Mar-Apr;4(5) : 1769-1778

1775

instructions neven inst and the process variation

information.

7. Then, the average aging is estimated based on

the total amount of aging. After estimating the

average aging information, the algorithm

estimates the amount of stress for each working

cluster.

8. Calculate weight factor of stress and the process

variation, the algorithm decides the number of

instructions for each cluster.

9. Finally, the algorithm returns the instruction

distribution level for each working cluster.

10. After the configuration, the host launches a

kernel function and the instructions are fetched.

For each instruction, the algorithm gets the

instruction type and the corresponding

instruction distribution level.

11. Next, the instruction is sent to the best suitable

working cluster and the algorithm increases the

instruction distribution counter. At last, the

algorithm resets the instruction distribution

counter if all the instruction distribution

counters reach their limit.

12. After the configuration, the host launches a

kernel and the instruction distribution unit

starts fetching and distributing the instructions

based on the instruction distribution level.

IV. SIMULATION RESULTS

Experimental Setup

We have extensively evaluated our framework by

comparing it to several state-of-the-art existing

frameworks. We have built the simulator that

represents our target GPU-based embedded system

and the simulator is assumed to resemble Nvidia’s

Tegra mobile embedded system. We also assumed that

our target GPU has a total of 13 SMs and the off-chip

memory is shared by the CPUs and the GPU. We have

selected various benchmark applications from

NVIDIA’s Compute Unified Device Architecture

(CUDA) toolkit to evaluate our technique with

different computational workloads for the embedded

GPUs. We have generated 50 different process

variation maps by using the area information in

GPGPU-Sim and the process variation model

from(H.lee et al., 2016). In addition, the aging traces

of SO and MC applications are collected over the 10

years of period to observe the long term aging

behavior. During the experiments, the aging traces are

generated for each process variation map. The

compiler-based technique shows varying aging

improvements for different process variation maps,

whereas our technique and the even distribution

technique consistently improve the aging of

embedded GPUs. This is because the compiler-based

technique only disables the aged clusters and sends all

the workloads to the healthy clusters. In addition, our

results show that the ranges of aging distribution are

increased over time with the compiler-based

technique and the original application. This is because

the compiler based technique and the original

application do not consider the process variation and

the core-level guard-banding properly.

Table 2: Standard Application and Configuration

application Short

Form

Grid

Size

Bloc

k

Size

Binomial Option BN 16 128

Convolution

Separable

CON

V

288 64

FastWalshTransfor

m

FWT 128 256

SobelFilter SF 102

4

64

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

K. S. Balamurugan et al. Int J S Res Sci. Tech. 2018 Mar-Apr;4(5) : 1769-1778

1776

We selected various benchmark applications to

represent the computational workload for the

embedded GPUs. Table 2 shows the list of the

benchmark applications and their configurations.

During the experiments, we extracted duty cycle

information of each application from the GPGPU-Sim.

we can observe that the even distribution and the

compiler-based technique have lower success rates

compared to our technique. This is because the

process variation and the cluster-level guardbanding

may cause a different amount of stress for the same

number of instructions and increase the randomness

in the system state. Since this random behavior is not

considered by the other techniques, they have lower

success rate compared to our technique. We measure

the relative standard deviation of aging of SP/SFU

units to observe the impact of the above mentioned

randomness. Figure 2 shows the average relative

standard deviation for all the 50 process variation

maps. We can observe that the aging is well balanced

across the embedded GPU with our technique.

However, the other techniques do not show the

balanced aging distribution. This is because other

techniques’ optimization may not capture the

randomness of the process variation. The results in

Figure 2 and 3 imply that other techniques may

worsen the aging of embedded GPU without proper

consideration for process variation.

V. CONCLUSION

We proposed a Light-weight Process variation-aware

instruction distribution algorithm for Embedded

GPUs. By extending the functionality of the existing

warp scheduler and instruction dispatcher, the

workload is distributed across the embedded GPU to

minimize its aging and the performance overhead.

The warp formation and workload distribution

algorithms generate information to (re)configure the

cluster and balance the stress across an embedded

GPU. Then, the host configures the GPU with the

results from the algorithms before it launches a kernel

function. After that, the GPU distributes the

instructions based on the instruction distribution ratio.

Compared to the original applications, our technique

improves the aging of the embedded GPU by 30% on

average. Moreover, compared to the state-of-the-art

technique, our technique further improves the aging

of the embedded GPU by 3% on average while

reducing the performance overhead by 16.4% on

average. These experimental results show that our

technique may minimize the aging of the embedded

GPU while maximizing the probability to meet the

timing requirements of the system. Moreover, our

technique has less soft-error susceptibility than the

state-of-the-art technique due to the reduced

performance overhead.

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

K. S. Balamurugan et al. Int J S Res Sci. Tech. 2018 Mar-Apr;4(5) : 1769-1778

1777

VI. REFERENCES

[1]. H. Lee, M. Shafique, and M. A. A. Faruque.

"Low-overhead Aging-aware Resource

Management on Embedded GPUs". 54th

ACM/EDAC/IEEE Design Automation

Conference (DAC’17), pages 1–6, 2017.

[2]. P. Aguilera, J. Lee, A. Farmahini-Farahani, K.

Morrow, M. Schulte, and N. S. Kim. "Process

variation-aware workload partitioning

algorithms for GPUs supporting spatial-

multitasking". Design, Automation Test in

Europe Conference Exhibition (DATE’14), pages

1–6, March 2014.

[3]. F. Kriebel, S. Rehman, M. Shafique, and J.

Henkel. "ageOpt-RMT: Compiler-driven

variation-aware aging optimization for

redundant multithreading". 53nd

ACM/EDAC/IEEE Design Automation

Conference (DAC’16), pages 1–6, June 2016

[4]. Q. Xu and M. Annavaram. "PATS: Pattern

Aware Scheduling and Power Gating for

GPGPUs". Proceedings of the 23rd International

ConferenceonParallelArchitecturesandCompilat

ion(PACT’14),pages 225–236, 2014.

[5]. Y. Zhang, S. Chen, L. Peng, and S. Chen. "NBTI

alleviation on FinFET-

madeGPUsbyutilizingdeviceheterogeneity".

Integration, the VLSI Journal, 51:10–20, 2015.

[6]. Rahimi, L. Benini, and R. Gupta. "Aging-aware

CompilerdirectedVLIWAssignmentforGPGPUA

rchitectures". Proceedings

ofthe50thAnnualDesignAutomationConference(

DAC’13),pages1-6, 2013.

[7]. K.S.Balamurugan and Sri Sahithi. "Log

Likelihood Ratio Based Quantizer design for

target tracking in wireless sensor networks",

IJSRST, 2018.

[8]. D. Mirzoyan, B. Akesson, and K. Goossens.

"Process-variationaware Mapping of Best-effort

and Real-time Streaming Applications to

MPSoCs". ACM Transactions on Embedded

Computing Systems, 13(2s):1–24, Jan. 2014.

[9]. T. R. Mck, Z. Ghaderi, N. D. Dutt, and E.

Bozorgzadeh.

"ExploitingHeterogeneityforAging-

AwareLoadBalancinginMobile Platforms". IEEE

Transactions on Multi-Scale Computing

Systems, 3(1):25–35, Jan 2016

[10]. F. Kriebel, S. Rehman, M. Shafique, and J.

Henkel. ageopt-rmt: Compiler-driven variation-

aware aging optimization for redundant

multithreading. 2016 53nd ACM/EDAC/IEEE

Design Automation Conference (DAC’16), pages

1–6, June 2016.

[11]. H. Lee, H. Chen, and M. A. A. Faruque. "PAIS:

Parallelization aware instruction scheduling for

improving soft-error reliability of GPU-based

systems". Design, Automation Test in Europe

Conference Exhibition (DATE’16), pages 68–73,

2016.

[12]. H. Lee and M. A. A. Faruque. "GPU-EvR: Run-

Time Event Based Real-Time Scheduling

Framework on GPGPU Platform". Design,

Automation and Test in Europe Conference and

Exhibition (DATE’14), pages 1–6, 2014.

[13]. H. Lee and M. A. A. Faruque. "Run-Time

Scheduling Framework for Event-Driven

Applications on a GPU-Based Embedded

System". IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems,

35(12):1956–1967, 2016.

[14]. Lotfi, A. Rahimi, L. Benini, and R. Gupta.

"Aging-Aware Compilation for GP-GPUs". ACM

Transactions on Architecture and Code

Optimization (TACO’15), pages 1–20, 2015.

[15]. Y. Zhang, S. Chen, L. Peng, and S. Chen. "NBTI

alleviation on FinFET-made GPUs by utilizing

device heterogeneity". Integration, the VLSI

Journal, 51:10–20, 2015.

[16]. S. Rehman, F. Kriebel, D. Sun, M. Shafique, and

J. Henkel. "dTune: Leveraging Reliable Code

Generation for Adaptive Dependability Tuning

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

K. S. Balamurugan et al. Int J S Res Sci. Tech. 2018 Mar-Apr;4(5) : 1769-1778

1778

Under Process Variation and Aging-Induced

Effects". Proceedings of the 51st Annual Design

Automation Conference (DAC’14), pages 1–6,

2014.

[17]. J. Tan, M. Chen, Y. Yi, and X. Fu. "Mitigating

the Impact of

HardwareVariabilityforGPGPUsRegisterFile".

IEEETransactions on Parallel and Distributed

Systems, 27(11):3283–3297, 2016.

[18]. J. Sun, R. Lysecky, K. Shankar, A. Kodi, A.

Louri, and J. Roveda. "Workload Assignment

Considering NBTI Degradation in Multicore

Systems". ACM Journal on Emerging

Technologies in Computing Systems (JETC’14),

pages 1–22, 2014.

[19]. D.Gnad,M.Shafique,F.Kriebel,S.Rehman,D.Sun,a

ndJ.Henkel. Hayat: Harnessing dark silicon and

variability for aging deceleration and balancing.

Proceedings of the 52nd Annual Design

Automation Conference (DAC’15), pages 1–6,

2015.

[20]. J. Henkel, L. Bauer, N. Dutt, P. Gupta, S. Nassif,

M. Shafique, M. Tahoori, and N. Wehn.

"Reliable on-chip systems in the nanoera:

Lessons learnt and future trends". 50th

ACM/EDAC/IEEE Design Automation

Conference (DAC’13), pages 1–10, May 2013.

[21]. M.Bandan,S.Bhattacharjee,R.Shafik,D.Pradhan,a

ndJ.Mathew. "Lifetime Reliability-Aware

Checkpointing Mechanism: Modelling and

Analysis". 2013 International Symposium on

Electronic System Design (ISED’13), pages 128–

132, 2013.

