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ABSTRACT 
 

In the Embedded systems, Graphics Processing Units (GPUs) are used to manage the huge number of 

computation and to convince the timing limit. Future size, chip aging and die-parameter variations are 

challenging issues in GPUs. To solve the process variation issues, some processors operate lowest operating 

frequency in chip-level guard banding, that effects reduce the performance in chip-level. Some other processors 

improve their performance through core-level guard banding that possibly use various operating frequency for 

every core. Presents of Process variation, each cluster has a dissimilar level of degradation for the equal amount 

of instructions. For that reason, a process variation-aware instruction distribution algorithm is essential to 

balance the stress across the embedded GPU. Suggested light-weight process variation-aware instruction 

distribution algorithm estimate weight factor of the process variation, level of stress, the current aging status, 

cluster information (availability and operating frequency) and hierarchy of Real-time Application then gives a 

various level of instructions to clusters to reduce the aging effect. Simulation results shown that suggested 

technique improved the GPU aging in 85% and reduce the 40% overhead than compiler-based technique. 

Keywords: aging-aware, process variation embedded GPUs. 

 

I. INTRODUCTION 

 

Graphics Processing Units (GPUs) has required to 

progress the system performance in GPUs based 

embedded systems such as mobile devices to satisfy 

the timing constraint (H. Lee et al., 2016). Due to the 

small size, nano-scale multi-core processors, including 

GPUs, have faced several reliability challenges such as 

aging effects and (die-to-die and with-in-die) 

parameter variations (Aguilera et al., 2014). Negative 

Bias Temperature Instability (NBTI) and Hot Carrier 

Injection (HCI) are considered among the most 

critical aging-related reliability challenges in nano-

scaled semiconductors(J. Sun, 2014).The amount of 

transistor degradation caused by NBTI and HCI is 

proportional to the time a transistor is stressed or 

switched (X. Chen et all., 2014). Various workload 

management techniques have been proposed to 

balance the stress level and reduce switching activity 

across the chip to minimize NBTI and HCI effects. To 

improve the special effects of process variation, 

normally, multi-core processors ware employed a 

chip-level guard-banding method, which operates at 

low frequency. Core-level guard banding allow the 

various frequencies for every core. In Core-level 

guard-banding, every core of a single-chip have a 

various operating frequency and duty cycle, which 

directs to changeable stress levels and thermal 

variations in the chip. To address the above challenges, 

proposed algorithms to calculate approximately the 

aging status of the GPU and allocate the workload 

across the GPU with respect the process variation and 

the core-level guard-banding.  To express the 

unbalanced workload distribution with the process 

variation  
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and core-level guard-banding, carry out experiments 

by real world applications. GPGPU-Sim simulator 

with NVIDIA’s Tegra TK1 configuration is used. The 

SP and SFU units are mapped into a process variation 

map that is generated in (D.Gnad, 2015). During the 

experiments, evenly distribute the instructions to the 

SP and SFU units. Due to the PV and cluster-level 

guard-banding, the stress is not equally spread across 

the GPU even if every cluster processes the equal 

number of instructions. (H. Lee et al., 2017) point out 

that the current warp schedulers and the instruction 

dispatchers have a limitation in minimizing the NBTI 

and HCI effects in the process variation. Most of 

research suggested minimizing the effects of NBTI and 

HCI on multi/many-core systems. (J. Henkel et al., 

2013) surveys different trade-off points connecting 

with power, A job migration method (M.Banda et all., 

2013) is planned to reduce the effect of NBTI. The 

planned method uses the spare processor to migrate 

responsibilities from the near-to-die processor to the 

young processor. But, this technique is not relevant to 

the GPUs. The proposed techniques assign the 

application’s function to processors based on the 

application information and the current NBTI status. 

(T. R. Mck et al., 2017) Job mapping technique for 

heterogeneous multiprocessors (HMP) is proposed. 

Based on the application profile, the sensing data, 

performance counters and the job are mapped to 

various processors to get better chip era. Conversely, 

each and every one the cores in the GPU carry out the 

same kernel function, it is rigid to allot special kernel 

functions to core on the GPU. Besides, obtainable 

GPUs do not permit mapping between the tasks and 

cores on the GPU when the mapping is controlled by 

the hardware. A thread-to-core mapping method is 

planned in (M. Shafiqu et al., 2015) to take full 

advantage of the performance of a many-core 

processor.  

 

(Lotfi et al., 2015) suggested compiler-based 

techniques to decrease the NBTI effect and increase 

the lifetime of the GPU. In run-time, the Just-In-Time 

(JIT) compiler generates a strong kernel function 

based on the current aging status of the GPU. Strong 

kernel needs supplementary workloads to reassign the 

workloads from the corrupted cores to strong cores. 

The amount of extra workload depends on the 

number of corrupted cores. The proposed procedure 

founds the most favorable amount of SMs to manage 

the GPU applications and direct the clock signal at SM 

granularity. But the embedded GPUs contain few SMs 

only. Different scheduling properties are assigned to 

each application. (H. Lee et al., 2016) proposes a fine-

grained GPU resource management framework that 

framework partitions the GPU workload into tiny-

workloads to execute preemption. Since this outline 

just considers periodic applications, it has restrictions 

in partitioning random GPU workloads during run-

time. Few proposed scheduling framework for event-

driven real-time systems that generates the mapping 

between the Streaming Multiprocessors (SMs) and the 

applications in order to offer temporal and spatial 

preemption. For that reason, well-established 

workload management technique is needed to 

reconfigure the cluster of cores and distributes the 

workload to reduce the NBTI and HCI effects in the 

embedded GPUs. In this circumstance, Suggested 

Light-weight Process variation-aware instruction 

distribution algorithm, allots the instruction to cluster 

with respect PV for improve the ageing in embedded 

GPU. The rest of the document is prearranged as 

follows. In Section II, Problem formation is illustrated 

for improve the ageing-aware in embedded GPU 

Section III, Proposed algorithm was explained step-

by-step. In Section IV, simulation results are discussed 

and finally section V, bring to a close the research 

work. 

II. PROBLEM FORMATION 

 

Aging factor depends on the actual stress/recovery 

phase, degradation by NBTI depends on supply 

voltage Vdd, temperature T, threshold voltage Vth, and 

device parameters, comprising for instance oxide 

geometrical and electrical parameters, activation 
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energy, device size, and load. Transistors age mainly 

when they are under stress (NBTI) and switch their 

state (HCI).  

 

Table 1. Basic information in NBTI and HCI 

NBTI PMOS- 

Under 

stress 

Vth is increased due to 

traps, which are 

generated in the 

interface between the 

oxide layer and 

silicon/channel.  

 

PMOS-

Not 

under 

stress 

Vth is decreased 

(recovery phase) 

HCI NMOS Collision between the 

accelerated electrons and 

the gate oxide interface 

generates electron-hole 

pairs. 

 

In NMOS transistors, the collision among the 

accelerated electrons and the gate oxide interface 

generates electron-hole pairs. After that, free 

electrons get trapped in the gate oxide layer and the 

Vth is increased since NMOS transistor changes its 

state, the total amount of Vth shift is most sensitive to 

the number of state transitions. In short, HCI depends 

upon the switching activity. (H.Lee et al., 2017) 

proposed a fresh technique to reduce the NBTI and 

HCI effects on an embedded GPU under the process 

variation. The proposed technique includes an aging-

aware cluster formation algorithm that creates core 

clusters based on the present NBTI and HCI 

information. In suggested algorithm, each cluster has 

less aging variation and aged core clusters are power-

gated during run-time. A process variation-aware 

workload distribution algorithm that generates the 

instruction distribution level based on the process 

variation information. The proposed algorithm takes 

aging and the process variation information about 

active core clusters and generates the instruction 

distribution ratio to evenly distribute the stress across 

the GPU under the process variation. An instruction 

distribution unit that incorporates the existing warp 

scheduler and instruction dispatch unit. During run-

time, right before the kernel launch, the proposed 

instruction distribution unit is configured based on 

the weight factor distributed algorithms. After the 

configuration, the instructions are distributed based 

on the instruction distribution level to minimize the 

NBTI and HCI effects.  

 

Aging-Aware Cluster Formation 

The degradation of the components in a multi/many-

core processor is closely related to stress and power 

management. Moreover, the aging gap between the 

clusters will become larger over time due to the 

process variation, cluster-level guard-banding, and 

unbalanced stress distribution. In order to minimize 

the effects of the process variation and the cluster-

level guard-banding, the proposed aging-aware cluster 

formation algorithm (re)configures the clusters by 

using the current aging information. Before the host 

launches a kernel function, the host obtains the 

current aging information for all the cores in the GPU 

through the delay monitors. Then, the host sorts the 

cores based on the aging information in descending 

order and groups the cores to create the clusters. Thus, 

each cluster has cores that have similar degradation 

levels and minimum aging variations. The sorting and 

clustering process do not need to consider the process 

variation at this point because the amount of 

degradation is the result of the process variation. After 

that, each cluster sets its operating frequency by 

finding a core with minimum operating frequency. 

Since the entire GPU may not be required to execute 

the kernel function, after the clustering, the proposed 

aging-aware cluster formation algorithm selects some 

degraded clusters for power-gating based on the GPU 

resource utilization information, which is generated 

in design-time. 
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Figure 1. Proposed architecture for Light Embedded 

GPUs. 

 

Process Variation-Aware Workload Distribution 

Algorithm 

Due to the process variation, the same number of 

instructions causes a different amount of degradation 

for each cluster. In order to evenly distribute the 

stress across the GPU, each working cluster should 

process a different number of instructions. The 

proposed process variation-aware workload 

distribution algorithm estimates the instruction 

distribution ratio between the active clusters. For each 

kernel, the proposed algorithm assigns the same 

number of instructions for each working cluster and 

gets the aging estimation. Each working cluster will 

have a different aging status due to the different 

operating frequencies, which are caused by the 

process variation. Then, the proposed algorithm gets 

the average from the aging estimation of working 

clusters and sets this average as a desired aging status 

after executing the kernel function. The amount of 

stress for each cluster can be obtained by subtracting 

the current aging status from the desired aging status. 

By using the amount of stress and the process 

variation information, the instruction distribution 

ratio is estimated. 

 

Applications-aware GPU resources (re)allocation 

While driving, mixture of safety critical and non-

safety applications are launched by the system 

depending on the current system status. For example, 

when driving on a highway, the system would launch 

a set of safety critical and high priority applications 

for vehicle detection. On the other hand, when 

driving in a school area, the system would launch a 

different set of safety critical and high priority 

applications for pedestrian detection and traffic sign 

recognition. At the same time, non-safety critical and 

low priority application may be running on the 

system. Each application would have a different 

priority and deadline depending on the current system 

status. Note that in this type of embedded system, 

small timing violations may cause degradation in 

Quality of Service (QoS), such as glitches in an 

instance of a traffic sign image. However, small 

quality degradation would not cause the system to fail. 

Therefore, the system is a soft real-time system and 

the QoS of the system highly depends on the status of 

safety critical and high priority applications. The 

example scenario indicates that the GPU needs to be 

efficiently assigned and provide preemption 

capabilities, in order to meet the deadlines of the 

applications. Moreover, the results imply that the 

performance overhead of launching multiple sub-

kernels may be relatively small compared to the 

execution time, of the kernel, within a single launch. 

The problem of run-time scheduling on a GPU-based 

embedded system poses the following research 

challenges: How to partition GPU kernels into 

multiple sub-kernels during run-time, such that 

multiple application kernels could concurrently 

occupy the GPU, where the number of the 

applications that meet their deadline is maximized and 

How to dynamically generate a schedule for the GPU 

that would increase the number of high priority 

applications meeting the deadline as much as possible. 

In order to address the mentioned challenges, 

proposed a novel scheduling framework to partition 
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GPU application kernels and generate sub-kernel 

launch sequences, for the GPU during run-time. Based 

on the current status of GPU-based embedded systems 

and application deadlines, the proposed GPU 

execution schedule generator generates sub-kernel 

launch sequences that maximize the number of 

applications meeting deadlines. 

 

Instruction distribution unit 

The proposed instruction distribution unit 

incorporates the existing warp scheduler and 

instruction dispatch unit to balance the stress across 

the GPU. The host configures the instruction 

distribution unit using the instruction distribution 

ratio before launching a kernel function. After the 

host launches a kernel function, the instruction 

distribution unit controls the behavior of the warp 

scheduler and the instruction dispatch unit to evenly 

distribute the stress over the GPU. When an 

instruction is ready, the instruction dispatch unit 

sends the instruction to the first available cluster and 

increases the corresponding instruction distribution 

counter. When all the instruction distribution 

counters reach their limits, then the instruction 

distribution unit resets the counters and sends the 

instruction to the first available cluster. As discussed 

in Section 1, the basic execution unit of the target 

embedded GPU is a warp, which represents the 

behavior of 32 cores. The instruction distribution unit 

needs to track the instruction distribution ratio and 

status for 8 clusters of cores (6 SP clusters and 2 SFU 

clusters). This can be done with eight 16-bit registers 

and counters. In addition, the existing warp scheduler 

and instruction dispatcher need to be modified with 

additional control signals and to change their behavior 

depending on the status of the instruction distribution. 

The area and power consumption overheads of the 

above-mentioned logic are therefore negligible, i.e., 

only a few registers/counters. The performance 

overhead results are presented in Section iv.  

 

 

III. PROPOSED WORK  

 

3.1. Weight Factored Distribution Algorithm   

In this section, the Weight Factored Distribution 

Algorithm estimates the weight factor of following 

input parameters like mention given below.  

 Current Aging level (A)  

 Process Variation (P)   

 Amount of Stress (S)  

 Cluster Information (Availability, Operating 

Frequency) (I) 

 Application Level (Ap). 

 

The weight factor distribution algorithm precedes the 

parameters of the cluster/wrap as inputs and creates 

weight factors with respect to an application specified 

needs. The weight factors are evaluated in order to 

find the levels of the parameters desired to reach 

improved performance. 

Procedure for WFD Algorithm is, 

 

Step 1:  Following are the assumptions thought-

about,  

 The Availability of Cluster and operating 

frequency as describe the  Cluster information 

level of the Cluster Cw, and Process variation 

level Pw wherever  0 <P𝑤< 1, (P𝑤 = 0 means 

that the all cluster in same level- run out wrap 

scheduler algorithm, clusters are utmost good 

and P𝑤 = 1 means that the Clusters are 

dissimilar performance.)  

 The Weight Factors of the four parameters, 

obtainable  Cluster information, Current Aging 

level, amount of Stress and process variations are 

Wc, Wa, Ws and Wp severally, wherever Wc = 

1 and WC +Wa+WS+ WP =1.  

 

The factors that reason importance levels like high, 

medium, low and none are IH, IM,IL and 0, 

respectively, Wherever their values are determined 
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by the system designer, and 0 <IH <IM<IL< 1. The 

numbers of various importance levels the user has 

such that are NH, NM, NL and NN respectively, 

Wherever NH + NM + NL + NN= 3 (since the satisfied 

aging level of the Cluster parameters that a user may 

Specify is three)  

 

Step 2:  The weight factor of the four vital levels when 

adjusted to user preferences and battery power 

are WIH, WIM, WIL and WIN, respectively. 

 

       H H M M L L N N wN WI N WI N WI N WI P       

       

 M
M H

H

I
WI WI

I
     
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Step 3:  The Weights of four importance levels are 

evaluated by using the following 

calculations 
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From these formulas the weight factor ranks of each 

parameter are evaluated. These weights factors values 

are set as the input to the suggested light weight 

process variation-aware instruction distributed 

algorithm and estimate the instruction distribution 

ratio to clusters.   

1. The proposed algorithm receives the following 

information as input: resource utilization for 

current kernel RK, Types of computational 

components T, delay information D, and warp 

size Nwarp. 

2. The computational components are sorted based 

on the current delay information. 

After that, based on the warp size, Nwarp, the 

components are clustered and the cluster 

information is updated. 

3. Next, the proposed WFD algorithm selects 

clusters for power-gating based on the resource 

utilization information. 

The remaining clusters are selected as the 

running clusters. 

4. The operating frequency is selected for working 

clusters. 

At the end, the clustering information, which 

includes power-gating, and the operating 

frequencies are returned. 

5. Takes the working cluster information Cwork, the 

process variation information PV, and the 

number of instructions Ninst as inputs.  

6. At the beginning, the algorithm evenly 

distributes the instructions to working clusters. 

The algorithm estimates the aging status of each 

working cluster using the number of 
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instructions neven inst and the process variation 

information. 

7. Then, the average aging is estimated based on 

the total amount of aging. After estimating the 

average aging information, the algorithm 

estimates the amount of stress for each working 

cluster. 

8. Calculate weight factor of stress and the process 

variation, the algorithm decides the number of 

instructions for each cluster. 

9. Finally, the algorithm returns the instruction 

distribution level for each working cluster. 

10. After the configuration, the host launches a 

kernel function and the instructions are fetched. 

For each instruction, the algorithm gets the 

instruction type and the corresponding 

instruction distribution level. 

11. Next, the instruction is sent to the best suitable 

working cluster and the algorithm increases the 

instruction distribution counter.  At last, the 

algorithm resets the instruction distribution 

counter if all the instruction distribution 

counters reach their limit. 

12. After the configuration, the host launches a 

kernel and the instruction distribution unit 

starts fetching and distributing the instructions 

based on the instruction distribution level. 

 

IV. SIMULATION RESULTS 

 

Experimental Setup 

We have extensively evaluated our framework by 

comparing it to several state-of-the-art existing 

frameworks. We have built the simulator that 

represents our target GPU-based embedded system 

and the simulator is assumed to resemble Nvidia’s 

Tegra mobile embedded system. We also assumed that 

our target GPU has a total of 13 SMs and the off-chip 

memory is shared by the CPUs and the GPU. We have 

selected various benchmark applications from 

NVIDIA’s Compute Unified Device Architecture 

(CUDA) toolkit to evaluate our technique with 

different computational workloads for the embedded 

GPUs. We have generated 50 different process 

variation maps by using the area information in 

GPGPU-Sim and the process variation model 

from( H.lee et al., 2016). In addition, the aging traces 

of SO and MC applications are collected over the 10 

years of period to observe the long term aging 

behavior. During the experiments, the aging traces are 

generated for each process variation map. The 

compiler-based technique shows varying aging 

improvements for different process variation maps, 

whereas our technique and the even distribution 

technique consistently improve the aging of 

embedded GPUs. This is because the compiler-based 

technique only disables the aged clusters and sends all 

the workloads to the healthy clusters. In addition, our 

results show that the ranges of aging distribution are 

increased over time with the compiler-based 

technique and the original application. This is because 

the compiler based technique and the original 

application do not consider the process variation and 

the core-level guard-banding properly. 

 

Table 2:  Standard Application and Configuration 

application Short 

Form 

Grid 

Size 

Bloc

k 

Size 

Binomial Option BN 16  128 

Convolution 

Separable  

CON

V 

288 64 

FastWalshTransfor

m  

FWT  128  256 

SobelFilter  SF 102

4  

64 
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We selected various benchmark applications to 

represent the computational workload for the 

embedded GPUs. Table 2 shows the list of the 

benchmark applications and their configurations. 

During the experiments, we extracted duty cycle 

information of each application from the GPGPU-Sim. 

we can observe that the even distribution and the 

compiler-based technique have lower success rates 

compared to our technique. This is because the 

process variation and the cluster-level guardbanding 

may cause a different amount of stress for the same 

number of instructions and increase the randomness 

in the system state. Since this random behavior is not 

considered by the other techniques, they have lower 

success rate compared to our technique. We measure 

the relative standard deviation of aging of SP/SFU 

units to observe the impact of the above mentioned 

randomness. Figure 2 shows the average relative 

standard deviation for all the 50 process variation 

maps. We can observe that the aging is well balanced 

across the embedded GPU with our technique. 

However, the other techniques do not show the 

balanced aging distribution. This is because other 

techniques’ optimization may not capture the 

randomness of the process variation. The results in 

Figure 2 and 3 imply that other techniques may 

worsen the aging of embedded GPU without proper 

consideration for process variation. 

 
 

V. CONCLUSION 

 

We proposed a Light-weight Process variation-aware 

instruction distribution algorithm for Embedded 

GPUs. By extending the functionality of the existing 

warp scheduler and instruction dispatcher, the 

workload is distributed across the embedded GPU to 

minimize its aging and the performance overhead. 

The warp formation and workload distribution 

algorithms generate information to (re)configure the 

cluster and balance the stress across an embedded 

GPU. Then, the host configures the GPU with the 

results from the algorithms before it launches a kernel 

function. After that, the GPU distributes the 

instructions based on the instruction distribution ratio. 

Compared to the original applications, our technique 

improves the aging of the embedded GPU by 30% on 

average. Moreover, compared to the state-of-the-art 

technique, our technique further improves the aging 

of the embedded GPU by 3% on average while 

reducing the performance overhead by 16.4% on 

average. These experimental results show that our 

technique may minimize the aging of the embedded 

GPU while maximizing the probability to meet the 

timing requirements of the system. Moreover, our 

technique has less soft-error susceptibility than the 

state-of-the-art technique due to the reduced 

performance overhead. 
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